Suppr超能文献

针对具有缺失数据的小样本潜在增长模型校正模型拟合标准

Correcting Model Fit Criteria for Small Sample Latent Growth Models With Incomplete Data.

作者信息

McNeish Daniel, Harring Jeffrey R

机构信息

University of Maryland, College Park, MD, USA.

Utrecht University, Utrecht, Netherlands.

出版信息

Educ Psychol Meas. 2017 Dec;77(6):990-1018. doi: 10.1177/0013164416661824. Epub 2016 Aug 1.

Abstract

To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor small sample performance of these global data-model fit criteria and three post hoc small sample corrections have been proposed and shown to perform well with complete data. However, these corrections use sample size in their computation-whose value is unclear when missing data are accommodated with full information maximum likelihood, as is common with LGMs. A simulation is provided to demonstrate the inadequacy of these small sample corrections in the near ubiquitous situation in growth modeling where data are incomplete. Then, a missing data correction for the small sample correction equations is proposed and shown through a simulation study to perform well in various conditions found in practice. An applied developmental psychology example is then provided to demonstrate how disregarding missing data in small sample correction equations can greatly affect assessment of global data-model fit.

摘要

迄今为止,潜在增长模型(LGMs)的小样本问题在文献中尚未得到与相关混合效应模型(MEMs)同等程度的关注。尽管许多模型既可以用LGM形式构建,也可以用MEM形式构建,但LGMs独特地提供了评估整体数据 - 模型拟合度的标准。然而,先前的研究表明,这些整体数据 - 模型拟合度标准在小样本情况下表现不佳,并且已经提出了三种事后小样本校正方法,且在完整数据情况下显示出良好的性能。但是,这些校正方法在计算中使用样本量,而当使用全信息极大似然法处理缺失数据时(这在LGMs中很常见),样本量的值并不明确。本文提供了一个模拟,以证明在增长模型中几乎普遍存在的数据不完整情况下,这些小样本校正方法是不充分的。然后,针对小样本校正方程提出了一种缺失数据校正方法,并通过模拟研究表明,该方法在实际中发现的各种条件下都表现良好。随后提供了一个应用发展心理学的例子,以说明在小样本校正方程中忽略缺失数据会如何极大地影响整体数据 - 模型拟合度的评估。

相似文献

1
Correcting Model Fit Criteria for Small Sample Latent Growth Models With Incomplete Data.
Educ Psychol Meas. 2017 Dec;77(6):990-1018. doi: 10.1177/0013164416661824. Epub 2016 Aug 1.
2
New computations for RMSEA and CFI following FIML and TS estimation with missing data.
Psychol Methods. 2023 Apr;28(2):263-283. doi: 10.1037/met0000445. Epub 2022 Jan 10.
4
Full Information Maximum Likelihood Estimation for Latent Variable Interactions With Incomplete Indicators.
Multivariate Behav Res. 2017 Jan-Feb;52(1):12-30. doi: 10.1080/00273171.2016.1245600. Epub 2016 Nov 11.
5
A comparison of Bayesian to maximum likelihood estimation for latent growth models in the presence of a binary outcome.
Int J Behav Dev. 2020 Sep;44(5):447-457. doi: 10.1177/0165025419894730. Epub 2020 Jan 10.
6
Fitting Latent Growth Models with Small Sample Sizes and Non-normal Missing Data.
Int J Behav Dev. 2021 Mar;45(2):179-192. doi: 10.1177/0165025420979365. Epub 2021 Jan 7.
7
9
Evaluating FIML and multiple imputation in joint ordinal-continuous measurements models with missing data.
Behav Res Methods. 2022 Jun;54(3):1063-1077. doi: 10.3758/s13428-021-01582-w. Epub 2021 Sep 20.
10
Three Sample Estimates of Fraction of Missing Information From Full Information Maximum Likelihood.
Front Psychol. 2021 Aug 26;12:667802. doi: 10.3389/fpsyg.2021.667802. eCollection 2021.

引用本文的文献

2
3
Developmental Trajectories of Adolescents' Math Motivation: The Role of Mindset and Perceptions of Informal STEM Learning Site Inclusivity.
J Youth Adolesc. 2024 Jul;53(7):1542-1563. doi: 10.1007/s10964-024-01949-0. Epub 2024 Feb 28.
4
Fitting Latent Growth Models with Small Sample Sizes and Non-normal Missing Data.
Int J Behav Dev. 2021 Mar;45(2):179-192. doi: 10.1177/0165025420979365. Epub 2021 Jan 7.

本文引用的文献

1
Fit Indices Versus Test Statistics.
Multivariate Behav Res. 2005 Jan 1;40(1):115-48. doi: 10.1207/s15327906mbr4001_5.
2
Have Multilevel Models Been Structural Equation Models All Along?
Multivariate Behav Res. 2003 Oct 1;38(4):529-69. doi: 10.1207/s15327906mbr3804_5.
3
Is More Ever Too Much? The Number of Indicators per Factor in Confirmatory Factor Analysis.
Multivariate Behav Res. 1998 Apr 1;33(2):181-220. doi: 10.1207/s15327906mbr3302_1.
4
Structural Equation Modeling with Small Samples: Test Statistics.
Multivariate Behav Res. 1999 Apr 1;34(2):181-97. doi: 10.1207/S15327906Mb340203.
5
Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables.
Psychometrika. 2015 Jun;80(2):379-405. doi: 10.1007/s11336-013-9386-5. Epub 2013 Dec 11.
6
Nonlinear growth curves in developmental research.
Child Dev. 2011 Sep-Oct;82(5):1357-71. doi: 10.1111/j.1467-8624.2011.01630.x. Epub 2011 Aug 8.
7
Ensuring Positiveness of the Scaled Difference Chi-square Test Statistic.
Psychometrika. 2010 Jun;75(2):243-248. doi: 10.1007/s11336-009-9135-y.
9
Constrained versus unconstrained estimation in structural equation modeling.
Psychol Methods. 2008 Jun;13(2):150-70. doi: 10.1037/1082-989X.13.2.150.
10
Analysis of nonlinear patterns of change with random coefficient models.
Annu Rev Psychol. 2007;58:615-37. doi: 10.1146/annurev.psych.58.110405.085520.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验