Suppr超能文献

针对非靶向 LC-MS 脂质组学分析的感兴趣区域多元曲线分辨(ROIMCR)程序的验证。

Validation of the Regions of Interest Multivariate Curve Resolution (ROIMCR) procedure for untargeted LC-MS lipidomic analysis.

机构信息

IDEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.

IDEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.

出版信息

Anal Chim Acta. 2018 Sep 26;1025:80-91. doi: 10.1016/j.aca.2018.04.003. Epub 2018 Apr 17.

Abstract

Untargeted liquid chromatography coupled to mass spectrometry (LC-MS) analysis generates massive amounts of information-rich mass data which presents storage and processing challenges. In this work, the validation of a recently proposed procedure for LC-MS data compression and processing is presented, using as example the analysis of lipid mixtures. This method consists of a preliminary selection of the Regions of Interest of the LC-MS data (MSROI) coupled to their throughout chemometric analysis by the Multivariate Curve Resolution Alternating Least Squares method (MCR-ALS). The proposed data selection procedure is based on the search of the most significant mass traces regions with high mass densities. This allows for a drastic reduction of the MS data size and of the computer storage requirements, without any significant loss neither of spectral resolution nor of accuracy on m/z measures. The combination of the MSROI data compression and MCR-ALS data analysis procedures in the new ROIMCR procedure has the main advantage of not requiring neither the chromatographic peak alignment nor the chromatographic peak shape modelling used in many other procedures as a pre-treatment step of the data analysis. The proposed ROIMCR procedure is tested in the analysis of the LC-MS experimental data coming from different lipid mixtures and of a melanoma cell line culture sample with satisfactory results. The proposed strategy is shown to be a general, fast, reliable and easy to use method for general untargeted LC-MS metabolic and lipidomic data analysis type of studies.

摘要

非靶向液相色谱-质谱联用(LC-MS)分析会产生大量信息丰富的质谱数据,这给数据的存储和处理带来了挑战。本工作采用脂质混合物分析为例,对最近提出的一种 LC-MS 数据压缩和处理方法进行了验证。该方法包括对 LC-MS 数据的感兴趣区域(ROI)的初步选择,以及通过多元曲线分辨交替最小二乘法(MCR-ALS)对其进行全面的化学计量学分析。所提出的数据选择过程基于对具有高密度质量的最显著质量轨迹区域的搜索。这使得 MS 数据的大小和计算机存储需求大大减少,而对 m/z 测量的光谱分辨率和准确性没有任何显著损失。在新的 ROIMCR 程序中,将 MSROI 数据压缩和 MCR-ALS 数据分析程序相结合,主要优点是不需要作为数据分析预处理步骤的色谱峰对齐或许多其他程序中使用的色谱峰形状建模。在所提出的 ROIMCR 程序中对来自不同脂质混合物的 LC-MS 实验数据和黑色素瘤细胞系培养样本的分析进行了测试,结果令人满意。所提出的策略被证明是一种通用、快速、可靠且易于使用的方法,适用于一般的非靶向 LC-MS 代谢组学和脂质组学数据分析类型的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验