MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK; The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
Int J Biochem Cell Biol. 2018 Aug;101:74-79. doi: 10.1016/j.biocel.2018.05.014. Epub 2018 May 28.
Super-resolution microscopy techniques break the diffraction limit of conventional optical microscopy to achieve resolutions approaching tens of nanometres. The major advantage of such techniques is that they provide resolutions close to those obtainable with electron microscopy while maintaining the benefits of light microscopy such as a wide palette of high specificity molecular labels, straightforward sample preparation and live-cell compatibility. Despite this, the application of super-resolution microscopy to dynamic, living samples has thus far been limited and often requires specialised, complex hardware. Here we demonstrate how a novel analytical approach, Super-Resolution Radial Fluctuations (SRRF), is able to make live-cell super-resolution microscopy accessible to a wider range of researchers. We show its applicability to live samples expressing GFP using commercial confocal as well as laser- and LED-based widefield microscopes, with the latter achieving long-term timelapse imaging with minimal photobleaching.
超分辨率显微镜技术突破了传统光学显微镜的衍射极限,实现了接近数十纳米的分辨率。这种技术的主要优势在于,它们提供了接近电子显微镜所能达到的分辨率,同时保持了光学显微镜的优势,如广泛的高特异性分子标记、简单的样品制备和活细胞兼容性。尽管如此,超分辨率显微镜在动态、活体样本中的应用迄今为止受到限制,并且通常需要专门的、复杂的硬件。在这里,我们展示了一种新的分析方法,即超分辨率径向波动(SRRF),如何使更广泛的研究人员能够进行活细胞超分辨率显微镜。我们展示了它在使用 GFP 表达的活样本中的适用性,包括商用共聚焦显微镜以及基于激光和 LED 的宽场显微镜,后者在最小化光漂白的情况下实现了长期延时成像。