Suppr超能文献

基于 SiO/pDA 的仿生合成纳米复合印迹膜,具有溶胶-凝胶印迹层,用于选择性吸附和分离应用。

Bioinspired synthesis of SiO/pDA-based nanocomposite-imprinted membranes with sol-gel imprinted layers for selective adsorption and separation applications.

机构信息

Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.

出版信息

Phys Chem Chem Phys. 2018 Jun 13;20(23):15775-15783. doi: 10.1039/c8cp02068j.

Abstract

Inspired by the biomimetic membrane modification technique of polydopamine (pDA), SiO2/pDA-based nanocomposite-imprinted membranes (SpIMs) with high selectivity and stability have been successfully synthesized. Herein, tetracycline (TC) was used as a template molecule and instead of constructing imprinted polymers onto pristine membrane surfaces, a versatile pDA-modified strategy was initially conducted on the membrane surfaces followed by the reformative sol-gel imprinting technique. Moreover, largely enhanced TC-rebinding capacity (45.95 mg g-1), permselectivity of TC (separation factors more than 11.5) and structural stability (maintained 93% of the maximum adsorption capacity after 11 cycling operations) could be easily achieved because of the construction of membrane-based multilevel nanocomposite surfaces. These results strongly illustrated that the incorporation of pDA-based sol-gel imprinted polymers into molecularly imprinted membranes could result in both high rebinding capacity and excellent permselectivity. All synthesis processes were carried out at low temperatures and ordinary pressures, which is energy-efficient and environmentally friendly for large-scale applications.

摘要

受聚多巴胺(pDA)仿生膜修饰技术的启发,成功合成了具有高选择性和稳定性的 SiO2/pDA 基纳米复合印迹膜(SpIMs)。本文以四环素(TC)为模板分子,采用一种通用的 pDA 修饰策略对膜表面进行预处理,然后进行改良的溶胶-凝胶印迹技术。此外,由于构建了基于膜的多级纳米复合表面,可轻松实现 TC 的结合容量(45.95 mg g-1)、TC 的选择性(分离因子超过 11.5)和结构稳定性(11 次循环操作后仍保持最大吸附容量的 93%)的大幅提高。这些结果有力地说明了将基于 pDA 的溶胶-凝胶印迹聚合物引入分子印迹膜中可以同时获得高结合容量和优异的选择性。所有的合成过程都是在低温常压下进行的,这对于大规模应用来说是节能且环保的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验