Suppr超能文献

通过界面色氨酸残基控制跨膜螺旋动力学。

Control of Transmembrane Helix Dynamics by Interfacial Tryptophan Residues.

机构信息

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas.

Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California.

出版信息

Biophys J. 2018 Jun 5;114(11):2617-2629. doi: 10.1016/j.bpj.2018.04.016.

Abstract

Transmembrane protein domains often contain interfacial aromatic residues, which may play a role in the insertion and stability of membrane helices. Residues such as Trp or Tyr, therefore, are often found situated at the lipid-water interface. We have examined the extent to which the precise radial locations of interfacial Trp residues may influence peptide helix orientation and dynamics. To address these questions, we have modified the GWALP23 (acetyl-GGALW(LA)LWLAGA-[ethanol]amide) model peptide framework to relocate the Trp residues. Peptide orientation and dynamics were analyzed by means of solid-state nuclear magnetic resonance (NMR) spectroscopy to monitor specific H- and N-labeled residues. GWALP23 adopts a defined, tilted orientation within lipid bilayer membranes with minimal evidence of motional averaging of NMR observables, such as H quadrupolar or N-H dipolar splittings. Here, we examine how peptide dynamics are impacted by relocating the interfacial Trp (W) residues on both ends and opposing faces of the helix, for example by a 100° rotation on the helical wheel for positions 4 and 20. In contrast to GWALP23, the modified GWALP23 helix experiences more extensive motional averaging of the NMR observables in several lipid bilayers of different thickness. Individual and combined Gaussian analyses of the H and N NMR signals confirm that the extent of dynamic averaging, particularly rotational "slippage" about the helix axis, is strongly coupled to the radial distribution of the interfacial Trp residues as well as the bilayer thickness. Additional H labels on alanines A3 and A21 reveal partial fraying of the helix ends. Even within the context of partial unwinding, the locations of particular Trp residues around the helix axis are prominent factors for determining transmembrane helix orientation and dynamics within the lipid membrane environment.

摘要

跨膜蛋白结构域通常含有界面芳香族残基,这些残基可能在膜螺旋的插入和稳定性中发挥作用。因此,色氨酸(Trp)或酪氨酸(Tyr)等残基通常位于脂质-水界面。我们研究了界面色氨酸残基的精确径向位置在多大程度上影响肽螺旋的取向和动力学。为了解决这些问题,我们修改了 GWALP23(乙酰-GGALW(LA)LWLAGA-[乙醇]酰胺)模型肽骨架,以重新定位色氨酸残基。通过固态核磁共振(NMR)光谱分析来监测特定的 H 和 N 标记的残基,以分析肽的取向和动力学。GWALP23 在脂质双层膜中采用定义明确、倾斜的取向,几乎没有 NMR 可观测值(如 H 四极矩或 N-H 偶极子分裂)的运动平均化证据。在这里,我们研究了通过在螺旋的两端和相对面上重新定位界面色氨酸(W)残基如何影响肽动力学,例如在螺旋轮上对位置 4 和 20 进行 100°旋转。与 GWALP23 相比,在不同厚度的几个脂质双层中,修饰后的 GWALP23 螺旋经历了更广泛的 NMR 可观测值的运动平均化。对 H 和 N NMR 信号的个体和联合高斯分析证实,动态平均化的程度,特别是围绕螺旋轴的旋转“滑动”,与界面色氨酸残基的径向分布以及双层厚度密切相关。在丙氨酸 A3 和 A21 上的额外 H 标记揭示了螺旋末端的部分磨损。即使在部分解旋的情况下,特定色氨酸残基在螺旋轴周围的位置也是决定跨膜螺旋在脂质膜环境中的取向和动力学的重要因素。

相似文献

1
Control of Transmembrane Helix Dynamics by Interfacial Tryptophan Residues.
Biophys J. 2018 Jun 5;114(11):2617-2629. doi: 10.1016/j.bpj.2018.04.016.
2
Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix Distortions within a Dynamic Membrane Peptide.
J Phys Chem B. 2019 Sep 26;123(38):8034-8047. doi: 10.1021/acs.jpcb.9b06034. Epub 2019 Sep 17.
3
Response of GWALP transmembrane peptides to changes in the tryptophan anchor positions.
Biochemistry. 2011 Sep 6;50(35):7522-35. doi: 10.1021/bi2006459. Epub 2011 Aug 12.
5
Single tryptophan and tyrosine comparisons in the N-terminal and C-terminal interface regions of transmembrane GWALP peptides.
J Phys Chem B. 2013 Nov 7;117(44):13786-94. doi: 10.1021/jp407542e. Epub 2013 Oct 29.
6
Influence of interfacial tryptophan residues on an arginine-flanked transmembrane helix.
Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183134. doi: 10.1016/j.bbamem.2019.183134. Epub 2019 Nov 16.
7
Flanking aromatic residue competition influences transmembrane peptide helix dynamics.
FEBS Lett. 2020 Dec;594(24):4280-4291. doi: 10.1002/1873-3468.13926. Epub 2020 Sep 24.
8
Transmembrane Helix Integrity versus Fraying To Expose Hydrogen Bonds at a Membrane-Water Interface.
Biochemistry. 2019 Feb 12;58(6):633-645. doi: 10.1021/acs.biochem.8b01119. Epub 2019 Jan 3.
9
Tyrosine replacing tryptophan as an anchor in GWALP peptides.
Biochemistry. 2012 Mar 13;51(10):2044-53. doi: 10.1021/bi201732e. Epub 2012 Mar 5.
10
Juxta-terminal Helix Unwinding as a Stabilizing Factor to Modulate the Dynamics of Transmembrane Helices.
Chembiochem. 2016 Mar 15;17(6):462-5. doi: 10.1002/cbic.201500656. Epub 2016 Feb 10.

引用本文的文献

3
Spiers Memorial Lecture: Analysis and design of membrane-interactive peptides.
Faraday Discuss. 2021 Dec 24;232(0):9-48. doi: 10.1039/d1fd00061f.
4
Illuminating Disorder Induced by Glu in a Stable Arg-Anchored Transmembrane Helix.
ACS Omega. 2021 Jul 26;6(31):20611-20618. doi: 10.1021/acsomega.1c02800. eCollection 2021 Aug 10.
5
Structural and Mechanismic Studies of Lactophoricin Analog, Novel Antibacterial Peptide.
Int J Mol Sci. 2021 Apr 2;22(7):3734. doi: 10.3390/ijms22073734.
6
Lipid-Dependent Titration of Glutamic Acid at a Bilayer Membrane Interface.
ACS Omega. 2021 Mar 17;6(12):8488-8494. doi: 10.1021/acsomega.1c00276. eCollection 2021 Mar 30.
7
Identification of a pocket factor that is critical to Zika virus assembly.
Nat Commun. 2020 Oct 2;11(1):4953. doi: 10.1038/s41467-020-18747-4.
8
Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix Distortions within a Dynamic Membrane Peptide.
J Phys Chem B. 2019 Sep 26;123(38):8034-8047. doi: 10.1021/acs.jpcb.9b06034. Epub 2019 Sep 17.
9
Transmembrane Helix Integrity versus Fraying To Expose Hydrogen Bonds at a Membrane-Water Interface.
Biochemistry. 2019 Feb 12;58(6):633-645. doi: 10.1021/acs.biochem.8b01119. Epub 2019 Jan 3.

本文引用的文献

1
Helix formation and stability in membranes.
Biochim Biophys Acta Biomembr. 2018 Oct;1860(10):2108-2117. doi: 10.1016/j.bbamem.2018.02.010. Epub 2018 Feb 13.
2
Membrane Anchoring of α-Helical Proteins: Role of Tryptophan.
J Phys Chem B. 2018 Jan 25;122(3):1185-1194. doi: 10.1021/acs.jpcb.7b11227. Epub 2018 Jan 11.
3
Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices.
Biochemistry. 2016 Nov 15;55(45):6337-6343. doi: 10.1021/acs.biochem.6b00896. Epub 2016 Nov 4.
4
The Single Transmembrane Segment of Minimal Sensor DesK Senses Temperature via a Membrane-Thickness Caliper.
J Bacteriol. 2016 Oct 7;198(21):2945-2954. doi: 10.1128/JB.00431-16. Print 2016 Nov 1.
5
Juxta-terminal Helix Unwinding as a Stabilizing Factor to Modulate the Dynamics of Transmembrane Helices.
Chembiochem. 2016 Mar 15;17(6):462-5. doi: 10.1002/cbic.201500656. Epub 2016 Feb 10.
7
Crystal structure of the entire respiratory complex I.
Nature. 2013 Feb 28;494(7438):443-8. doi: 10.1038/nature11871. Epub 2013 Feb 17.
8
Accommodation of a central arginine in a transmembrane peptide by changing the placement of anchor residues.
J Phys Chem B. 2012 Nov 1;116(43):12980-90. doi: 10.1021/jp308182b. Epub 2012 Oct 17.
9
Tyrosine replacing tryptophan as an anchor in GWALP peptides.
Biochemistry. 2012 Mar 13;51(10):2044-53. doi: 10.1021/bi201732e. Epub 2012 Mar 5.
10
Hydrophobic mismatch of mobile transmembrane helices: Merging theory and experiments.
Biochim Biophys Acta. 2012 May;1818(5):1242-9. doi: 10.1016/j.bbamem.2012.01.023. Epub 2012 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验