Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas.
Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California.
Biophys J. 2018 Jun 5;114(11):2617-2629. doi: 10.1016/j.bpj.2018.04.016.
Transmembrane protein domains often contain interfacial aromatic residues, which may play a role in the insertion and stability of membrane helices. Residues such as Trp or Tyr, therefore, are often found situated at the lipid-water interface. We have examined the extent to which the precise radial locations of interfacial Trp residues may influence peptide helix orientation and dynamics. To address these questions, we have modified the GWALP23 (acetyl-GGALW(LA)LWLAGA-[ethanol]amide) model peptide framework to relocate the Trp residues. Peptide orientation and dynamics were analyzed by means of solid-state nuclear magnetic resonance (NMR) spectroscopy to monitor specific H- and N-labeled residues. GWALP23 adopts a defined, tilted orientation within lipid bilayer membranes with minimal evidence of motional averaging of NMR observables, such as H quadrupolar or N-H dipolar splittings. Here, we examine how peptide dynamics are impacted by relocating the interfacial Trp (W) residues on both ends and opposing faces of the helix, for example by a 100° rotation on the helical wheel for positions 4 and 20. In contrast to GWALP23, the modified GWALP23 helix experiences more extensive motional averaging of the NMR observables in several lipid bilayers of different thickness. Individual and combined Gaussian analyses of the H and N NMR signals confirm that the extent of dynamic averaging, particularly rotational "slippage" about the helix axis, is strongly coupled to the radial distribution of the interfacial Trp residues as well as the bilayer thickness. Additional H labels on alanines A3 and A21 reveal partial fraying of the helix ends. Even within the context of partial unwinding, the locations of particular Trp residues around the helix axis are prominent factors for determining transmembrane helix orientation and dynamics within the lipid membrane environment.
跨膜蛋白结构域通常含有界面芳香族残基,这些残基可能在膜螺旋的插入和稳定性中发挥作用。因此,色氨酸(Trp)或酪氨酸(Tyr)等残基通常位于脂质-水界面。我们研究了界面色氨酸残基的精确径向位置在多大程度上影响肽螺旋的取向和动力学。为了解决这些问题,我们修改了 GWALP23(乙酰-GGALW(LA)LWLAGA-[乙醇]酰胺)模型肽骨架,以重新定位色氨酸残基。通过固态核磁共振(NMR)光谱分析来监测特定的 H 和 N 标记的残基,以分析肽的取向和动力学。GWALP23 在脂质双层膜中采用定义明确、倾斜的取向,几乎没有 NMR 可观测值(如 H 四极矩或 N-H 偶极子分裂)的运动平均化证据。在这里,我们研究了通过在螺旋的两端和相对面上重新定位界面色氨酸(W)残基如何影响肽动力学,例如在螺旋轮上对位置 4 和 20 进行 100°旋转。与 GWALP23 相比,在不同厚度的几个脂质双层中,修饰后的 GWALP23 螺旋经历了更广泛的 NMR 可观测值的运动平均化。对 H 和 N NMR 信号的个体和联合高斯分析证实,动态平均化的程度,特别是围绕螺旋轴的旋转“滑动”,与界面色氨酸残基的径向分布以及双层厚度密切相关。在丙氨酸 A3 和 A21 上的额外 H 标记揭示了螺旋末端的部分磨损。即使在部分解旋的情况下,特定色氨酸残基在螺旋轴周围的位置也是决定跨膜螺旋在脂质膜环境中的取向和动力学的重要因素。