Electrochemical Materials & Systems Group, Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99354 , United States.
ACS Appl Mater Interfaces. 2018 Jul 11;10(27):23094-23102. doi: 10.1021/acsami.8b05166. Epub 2018 Jun 26.
High-energy lithium-sulfur (Li-S) battery is built on high loading and dense sulfur electrodes. Unfortunately, these electrodes usually suffer from a low sulfur utilization rate and limited cycle life due to the gap in scientific knowledge between the fundamental research and the application at relevant scales. In this work, effects of electrode porosity on the electrode energy density, cell cycling stability, Li anode interface, and electrolyte/sulfur ratio were investigated on the basis of high-loading sulfur electrodes. Using electrodes with sulfur loading of 4 mg cm and thickness at ∼60 μm, a high energy density of over 1300 Wh L has been obtained at electrode level, which provides a decent basis for high-energy Li-S cell development. In addition, Li-S cells with the high-loading and dense electrodes demonstrate promising cycling stability (∼80% capacity retention for 200 cycles). These significant improvements are contributed by the synergistic effects of dense sulfur cathode, improved electrode wetting, and suppressed quick growth of the interphase layer on Li-metal anode. This study sheds light on rational design of sulfur cathode for balanced cell energy density and cycling life.
高能量的锂硫(Li-S)电池基于高负载和高密度的硫电极构建。不幸的是,由于基础研究与相关规模应用之间的科学知识差距,这些电极通常存在硫利用率低和循环寿命有限的问题。在这项工作中,基于高负载硫电极研究了电极孔隙率对电极能量密度、电池循环稳定性、锂金属阳极界面和电解质/硫比的影响。使用负载量为 4 mg cm 且厚度约为 60 μm 的电极,在电极层面获得了超过 1300 Wh L 的高能量密度,这为高能 Li-S 电池的发展提供了良好的基础。此外,具有高负载和致密电极的 Li-S 电池表现出良好的循环稳定性(200 次循环后容量保持率约为 80%)。这些显著的改进是由致密硫阴极、改善的电极润湿性以及抑制 Li 金属阳极界面相快速生长的协同作用贡献的。这项研究为平衡电池能量密度和循环寿命的硫阴极的合理设计提供了思路。