Suppr超能文献

使用组合式硬件和软件架构的同电极神经刺激和记录中的在线伪影消除。

Online Artifact Cancelation in Same-Electrode Neural Stimulation and Recording Using a Combined Hardware and Software Architecture.

出版信息

IEEE Trans Biomed Circuits Syst. 2018 Jun;12(3):601-613. doi: 10.1109/TBCAS.2018.2816464.

Abstract

Advancing studies of neural network dynamics and developments of closed-loop neural interfaces requires the ability to simultaneously stimulate and record the neural cells. Recording adjacent to or at the stimulation site produces artifact signals that are orders of magnitude larger than the neural responses of interest. These signals often saturate the recording amplifier causing distortion or loss of short-latency evoked responses. This paper proposes a method to cancel the artifact in simultaneous neural recording and stimulation on the same electrode. By combining a novel hardware architecture with concurrent software processing, the design achieves neural signal recovery in a wide range of conditions. The proposed system uniquely demonstrates same-electrode stimulation and recording, with neural signal recovery in presence of stimulation artifact 100 dB larger in magnitude than the underlying signals. The system is tested both in vitro and in vivo, during concurrent stimulation and recording on the same electrode. In vivo results in a rodent model are compared to recordings made by a commercial neural amplifier system connected in parallel.

摘要

为了推进神经网络动力学的研究和闭环神经接口的发展,需要能够同时刺激和记录神经细胞。在刺激部位附近或在刺激部位进行记录会产生比感兴趣的神经响应大几个数量级的伪迹信号。这些信号经常使记录放大器饱和,导致失真或短潜伏期诱发响应的丢失。本文提出了一种在同一电极上同时进行神经记录和刺激时消除伪迹的方法。通过将新颖的硬件架构与并发软件处理相结合,该设计在广泛的条件下实现了神经信号的恢复。所提出的系统独特地展示了同电极刺激和记录,并且在刺激伪迹比基础信号大 100dB 的情况下仍能实现神经信号的恢复。该系统在体外和体内进行了测试,在同一电极上进行了同步刺激和记录。在啮齿动物模型中的体内结果与通过并联连接的商业神经放大器系统进行的记录进行了比较。

相似文献

1
Online Artifact Cancelation in Same-Electrode Neural Stimulation and Recording Using a Combined Hardware and Software Architecture.
IEEE Trans Biomed Circuits Syst. 2018 Jun;12(3):601-613. doi: 10.1109/TBCAS.2018.2816464.
2
A hybrid hardware and software approach for cancelling stimulus artifacts during same-electrode neural stimulation and recording.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6190-6193. doi: 10.1109/EMBC.2016.7592142.
3
Recovery of early neural spikes from stimulation electrodes using a DC-coupled low gain high resolution data acquisition system.
J Neurosci Methods. 2018 Jul 1;304:118-125. doi: 10.1016/j.jneumeth.2018.04.014. Epub 2018 Apr 27.
6
A system for neural recording and closed-loop intracortical microstimulation in awake rodents.
IEEE Trans Biomed Eng. 2009 Jan;56(1):15-22. doi: 10.1109/TBME.2008.2005944.
7
Stimulus artifact removal using a software-based two-stage peak detection algorithm.
J Neurosci Methods. 2001 Aug 30;109(2):137-45. doi: 10.1016/s0165-0270(01)00407-1.
8
Factors affecting the stimulus artifact tail in surface-recorded somatosensory-evoked potentials.
Med Biol Eng Comput. 2006 Mar;44(3):226-41. doi: 10.1007/s11517-006-0034-4. Epub 2006 Mar 3.
9
Current-Efficient Preamplifier Architecture for CMRR Sensitive Neural Recording Applications.
IEEE Trans Biomed Circuits Syst. 2018 Jun;12(3):689-699. doi: 10.1109/TBCAS.2018.2826720.
10
Toward true closed-loop neuromodulation: artifact-free recording during stimulation.
Curr Opin Neurobiol. 2018 Jun;50:119-127. doi: 10.1016/j.conb.2018.01.012. Epub 2018 Feb 20.

引用本文的文献

1
A 2.5-20 kSps in-pixel direct digitization ECoG front-end with sub-millisecond stimulation artifact recovery.
IEEE J Solid-State Circuits. 2025 Mar;60(3):894-907. doi: 10.1109/jssc.2024.3508544. Epub 2024 Dec 18.
2
Anti-artifacts techniques for neural recording front-ends in closed-loop brain-machine interface ICs.
Front Neurosci. 2024 May 9;18:1393206. doi: 10.3389/fnins.2024.1393206. eCollection 2024.
3
Spike sorting in the presence of stimulation artifacts: a dynamical control systems approach.
J Neural Eng. 2024 Feb 9;21(1):016022. doi: 10.1088/1741-2552/ad228f.
5
Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches.
Front Neurol. 2022 Mar 9;13:825178. doi: 10.3389/fneur.2022.825178. eCollection 2022.
6
A Bidirectional Neural Interface SoC With Adaptive IIR Stimulation Artifact Cancelers.
IEEE J Solid-State Circuits. 2021 Jul;56(7):2142-2157. doi: 10.1109/jssc.2021.3056040. Epub 2021 Feb 9.
7
Advances in Neural Recording and Stimulation Integrated Circuits.
Front Neurosci. 2021 Aug 6;15:663204. doi: 10.3389/fnins.2021.663204. eCollection 2021.
8
A Biomimetic, SoC-Based Neural Stimulator for Novel Arbitrary-Waveform Stimulation Protocols.
Front Neurosci. 2021 Jul 29;15:697731. doi: 10.3389/fnins.2021.697731. eCollection 2021.
9
Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain.
Sci Adv. 2018 Sep 5;4(9):eaat0626. doi: 10.1126/sciadv.aat0626. eCollection 2018 Sep.

本文引用的文献

1
A hybrid hardware and software approach for cancelling stimulus artifacts during same-electrode neural stimulation and recording.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6190-6193. doi: 10.1109/EMBC.2016.7592142.
2
Neuronix enables continuous, simultaneous neural recording and electrical microstimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4451-4454. doi: 10.1109/EMBC.2016.7591715.
3
Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:474-7. doi: 10.1109/EMBC.2014.6943631.
4
A frequency shaping neural recorder with 3 pF input capacitance and 11 plus 4.5 bits dynamic range.
IEEE Trans Biomed Circuits Syst. 2014 Aug;8(4):510-27. doi: 10.1109/TBCAS.2013.2293821.
5
A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.
IEEE Trans Biomed Circuits Syst. 2013 Dec;7(6):761-72. doi: 10.1109/TBCAS.2013.2297695.
6
Real-Time Stimulus Artifact Rejection Via Template Subtraction.
IEEE Trans Biomed Circuits Syst. 2014 Jun;8(3):391-400. doi: 10.1109/TBCAS.2013.2274574. Epub 2013 Sep 20.
7
Stimulus-artifact elimination in a multi-electrode system.
IEEE Trans Biomed Circuits Syst. 2008 Mar;2(1):10-21. doi: 10.1109/TBCAS.2008.918285.
8
Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue.
J Neural Eng. 2012 Dec;9(6):066005. doi: 10.1088/1741-2560/9/6/066005. Epub 2012 Nov 16.
9
Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):410-21. doi: 10.1109/TNSRE.2012.2183617. Epub 2012 Jan 23.
10
Recent advances in neural recording microsystems.
Sensors (Basel). 2011;11(5):4572-97. doi: 10.3390/s110504572. Epub 2011 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验