Suppr超能文献

预测有精神疾病史的老年退伍军人的精神病住院情况。

Predicting Psychiatric Hospitalizations among Elderly Veterans with a History of Mental Health Disease.

作者信息

Burningham Zachary, Leng Jianwei, Peters Celena B, Huynh Tina, Halwani Ahmad, Rupper Randall, Hicken Bret, Sauer Brian C

机构信息

University of Utah, US.

Salt Lake City VA Medical Center, US.

出版信息

EGEMS (Wash DC). 2018 May 17;6(1):7. doi: 10.5334/egems.207.

Abstract

INTRODUCTION

Patient Aligned Care Team (PACT) care managers are tasked with identifying aging Veterans with psychiatric disease in attempt to prevent psychiatric crises. However, few resources exist that use real-time information on patient risk to prioritize coordinating appropriate care amongst a complex aging population.

OBJECTIVE

To develop and validate a model to predict psychiatric hospital admission, during a 90-day risk window, in Veterans ages 65 or older with a history of mental health disease.

METHODS

This study applied a cohort design to historical data available in the Veterans Affairs (VA) Corporate Data Warehouse (CDW). The Least Absolute Shrinkage and Selection Operator (LASSO) regularization regression technique was used for model development and variable selection. Individual predicted probabilities were estimated using logistic regression. A split-sample approach was used in performing external validation of the fitted model. The concordance statistic (C-statistic) was calculated to assess model performance.

RESULTS

Prior to modeling, 61 potential candidate predictors were identified and 27 variables remained after applying the LASSO method. The final model's predictive accuracy is represented by a C-statistic of 0.903. The model's predictive accuracy during external validation is represented by a C-statistic of 0.935. Having a previous psychiatric hospitalization, psychosis, bipolar disorder, and the number of mental-health related social work encounters were strong predictors of a geriatric psychiatric hospitalization.

CONCLUSION

This predictive model is capable of quantifying the risk of a geriatric psychiatric hospitalization with acceptable performance and allows for the development of interventions that could potentially reduce such risk.

摘要

引言

患者协作护理团队(PACT)的护理经理负责识别患有精神疾病的老年退伍军人,以预防精神危机。然而,在复杂的老年人群体中,利用患者风险实时信息来优先协调适当护理的资源很少。

目的

开发并验证一个模型,用于预测65岁及以上有精神疾病史的退伍军人在90天风险期内的精神病住院情况。

方法

本研究对退伍军人事务部(VA)企业数据仓库(CDW)中的历史数据采用队列设计。使用最小绝对收缩和选择算子(LASSO)正则化回归技术进行模型开发和变量选择。使用逻辑回归估计个体预测概率。采用拆分样本方法对拟合模型进行外部验证。计算一致性统计量(C统计量)以评估模型性能。

结果

建模前,识别出61个潜在候选预测因子,应用LASSO方法后保留27个变量。最终模型的预测准确性用C统计量0.903表示。外部验证期间模型的预测准确性用C统计量0.935表示。既往有精神病住院史、精神病、双相情感障碍以及与心理健康相关的社会工作接触次数是老年精神病住院的强预测因子。

结论

该预测模型能够以可接受的性能量化老年精神病住院风险,并有助于制定可能降低此类风险的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ea6/5982950/0b51a32c1a69/egems-6-1-207-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验