Department of Chemistry , Northwestern University , Evanston , Illinois 60201 , United States.
ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22167-22173. doi: 10.1021/acsami.8b05138. Epub 2018 Jun 25.
Two-dimensional (2D) layered hybrid organic-inorganic perovskites (HOIPs) have demonstrated improved stability and promising photovoltaic performance. The mechanical properties of such functional materials are both fundamentally and practically important to achieve both high performance and mechanically stable (flexible) devices. Here, we report the mechanical properties of a series of 2D layered lead iodide HOIPs and investigate the role of structural subunits (e.g., variation of the length of the organic spacer molecules, R and the number of inorganic layers, n) in the mechanical properties. Although 2D HOIPs have much lower nominal elastic modulus and hardness than 3D HOIPs, larger n number and shorter R lead to stiffer materials. Density functional theory simulations showed a trend similar to the experimental results. We compared these findings with other 2D layered crystals and shed light on routes to further tune the out-of-plane mechanical properties of 2D layered HOIPs.
二维(2D)层状混合有机-无机钙钛矿(HOIPs)已被证明具有更好的稳定性和有前途的光伏性能。这些功能材料的力学性能对于实现高性能和机械稳定(柔性)器件既具有基础意义又具有实际意义。在这里,我们报告了一系列二维层状碘化铅 HOIPs 的力学性能,并研究了结构单元(例如,有机间隔分子 R 的长度变化和无机层的数量 n)在力学性能中的作用。尽管 2D HOIPs 的名义弹性模量和硬度远低于 3D HOIPs,但较大的 n 值和较短的 R 导致材料更硬。密度泛函理论模拟显示出与实验结果相似的趋势。我们将这些发现与其他二维层状晶体进行了比较,并阐明了进一步调整二维层状 HOIPs 面外力学性能的途径。