Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.
University of Chinese Academy of Sciences , Beijing 100049 , China.
J Am Chem Soc. 2018 Jul 5;140(26):8147-8155. doi: 10.1021/jacs.8b02057. Epub 2018 Jun 22.
Lithium-sulfur batteries possess favorable potential for energy-storage applications because of their high specific capacity and the low cost of sulfur. Intensive understanding of the interfacial mechanism, especially the polysulfide formation and transformation under complex electrochemical environment, is crucial for the buildup of advanced batteries. Here, we report the direct visualization of interfacial evolution and dynamic transformation of the sulfides mediated by the lithium salts via real-time atomic force microscopy monitoring inside a working battery. The observations indicate that the lithium salts influence the structures and processes of sulfide deposition/decomposition during discharge/charge. Moreover, the distinct ion interaction and the diffusion in electrolytes manipulate the interfacial reactions determining the kinetics of the sulfide transformation. Our findings provide deep insights into surface dynamics of lithium-sulfur reactions revealing the salt-mediated mechanisms at nanoscale, which contribute to the profound understanding of the interfacial processes for the optimized design of lithium-sulfur batteries.
锂硫电池因其高比容量和硫的低成本而在储能应用中具有良好的潜力。深入了解界面机制,特别是在复杂电化学环境下多硫化物的形成和转化,对于先进电池的构建至关重要。在这里,我们通过实时原子力显微镜监测工作电池内部,报告了通过锂盐介导的界面演变和硫化物动态转化的直接可视化。观察表明,锂盐影响放电/充电过程中硫化物沉积/分解的结构和过程。此外,电解质中的不同离子相互作用和扩散控制着界面反应,决定了硫化物转化的动力学。我们的发现深入了解了锂硫反应的表面动力学,揭示了纳米尺度上盐介导的机制,有助于深入了解界面过程,从而优化锂硫电池的设计。