Suppr超能文献

Cas4 核酸酶定义了 CRISPR 位点整合的 DNA 片段的 PAM、长度和方向。

Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci.

机构信息

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.

Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA.

出版信息

Mol Cell. 2018 Jun 7;70(5):814-824.e6. doi: 10.1016/j.molcel.2018.05.002.

Abstract

To achieve adaptive and heritable immunity against viruses and other mobile genetic elements, CRISPR-Cas systems must capture and store short DNA fragments (spacers) from these foreign elements into host genomic CRISPR arrays. This process is catalyzed by conserved Cas1/Cas2 integration complexes, but the specific roles of another highly conserved protein linked to spacer acquisition, the Cas4 nuclease, are just now emerging. Here, we show that two Cas4 nucleases (Cas4-1 and Cas4-2) play critical roles in CRISPR spacer acquisition in Pyrococcus furiosus. The nuclease activities of both Cas4 proteins are required to process protospacers to the correct size. Cas4-1 specifies the upstream PAM (protospacer adjacent motif), while Cas4-2 specifies the conserved downstream motif. Both Cas4 proteins ensure CRISPR spacer integration in a defined orientation leading to CRISPR immunity. Collectively, these findings provide in vivo evidence for critical roles of Cas4 nucleases in protospacer generation and functional spacer integration at CRISPR arrays.

摘要

为了实现对病毒和其他移动遗传元件的适应性和遗传性免疫,CRISPR-Cas 系统必须将这些外源元件的短 DNA 片段(间隔物)捕获并存储到宿主基因组的 CRISPR 阵列中。这个过程是由保守的 Cas1/Cas2 整合复合物催化的,但与间隔物获取相关的另一种高度保守的蛋白质 Cas4 核酸酶的具体作用才刚刚显现出来。在这里,我们表明,两种 Cas4 核酸酶(Cas4-1 和 Cas4-2)在 Pyrococcus furiosus 的 CRISPR 间隔物获取中发挥关键作用。两种 Cas4 蛋白的核酸酶活性都需要将原间隔物加工成正确的大小。Cas4-1 指定上游 PAM(原间隔子相邻基序),而 Cas4-2 指定保守的下游基序。这两种 Cas4 蛋白都确保了 CRISPR 间隔子以确定的方向整合,从而实现 CRISPR 免疫。总的来说,这些发现为 Cas4 核酸酶在 CRISPR 阵列中原间隔子产生和功能间隔子整合中的关键作用提供了体内证据。

相似文献

1
Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci.
Mol Cell. 2018 Jun 7;70(5):814-824.e6. doi: 10.1016/j.molcel.2018.05.002.
2
Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers.
J Bacteriol. 2019 May 22;201(12). doi: 10.1128/JB.00747-18. Print 2019 Jun 15.
3
Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays.
Mol Cell. 2018 Apr 5;70(1):48-59.e5. doi: 10.1016/j.molcel.2018.03.003. Epub 2018 Mar 27.
5
Cas4 Facilitates PAM-Compatible Spacer Selection during CRISPR Adaptation.
Cell Rep. 2018 Mar 27;22(13):3377-3384. doi: 10.1016/j.celrep.2018.02.103.
6
Mechanism for Cas4-assisted directional spacer acquisition in CRISPR-Cas.
Nature. 2021 Oct;598(7881):515-520. doi: 10.1038/s41586-021-03951-z. Epub 2021 Sep 29.
7
Processing and integration of functionally oriented prespacers in the CRISPR system depends on bacterial host exonucleases.
J Biol Chem. 2020 Mar 13;295(11):3403-3414. doi: 10.1074/jbc.RA119.012196. Epub 2019 Dec 30.
10
Cas4/1 dual nuclease activities enable prespacer maturation and directional integration in a type I-G CRISPR-Cas system.
J Biol Chem. 2023 Sep;299(9):105178. doi: 10.1016/j.jbc.2023.105178. Epub 2023 Aug 20.

引用本文的文献

1
Discovery of CRISPR-Cas12a clades using a large language model.
Nat Commun. 2025 Aug 23;16(1):7877. doi: 10.1038/s41467-025-63160-4.
4
Cyanobacterial Argonautes and Cas4 family nucleases cooperate to interfere with invading DNA.
Mol Cell. 2025 May 15;85(10):1920-1937.e10. doi: 10.1016/j.molcel.2025.03.025. Epub 2025 Apr 26.
5
Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System.
Int J Mol Sci. 2024 Nov 22;25(23):12544. doi: 10.3390/ijms252312544.
7
Methanotrophic Methanoperedens archaea host diverse and interacting extrachromosomal elements.
Nat Microbiol. 2024 Sep;9(9):2422-2433. doi: 10.1038/s41564-024-01740-8. Epub 2024 Jun 25.
8
Diversity of viruses in metagenomes and virus-encoded CRISPR system components.
ISME Commun. 2024 Jan 10;4(1):ycad011. doi: 10.1093/ismeco/ycad011. eCollection 2024 Jan.
9
DnaQ mediates directional spacer acquisition in the CRISPR-Cas system by a time-dependent mechanism.
Innovation (Camb). 2023 Aug 9;4(5):100495. doi: 10.1016/j.xinn.2023.100495. eCollection 2023 Sep 11.
10
Histones direct site-specific CRISPR spacer acquisition in model archaeon.
Nat Microbiol. 2023 Sep;8(9):1682-1694. doi: 10.1038/s41564-023-01446-3. Epub 2023 Aug 7.

本文引用的文献

1
Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays.
Mol Cell. 2018 Apr 5;70(1):48-59.e5. doi: 10.1016/j.molcel.2018.03.003. Epub 2018 Mar 27.
2
Cas4 Facilitates PAM-Compatible Spacer Selection during CRISPR Adaptation.
Cell Rep. 2018 Mar 27;22(13):3377-3384. doi: 10.1016/j.celrep.2018.02.103.
3
The Biology of CRISPR-Cas: Backward and Forward.
Cell. 2018 Mar 8;172(6):1239-1259. doi: 10.1016/j.cell.2017.11.032.
4
Prespacer processing and specific integration in a Type I-A CRISPR system.
Nucleic Acids Res. 2018 Feb 16;46(3):1007-1020. doi: 10.1093/nar/gkx1232.
5
Phylogenomics of Cas4 family nucleases.
BMC Evol Biol. 2017 Nov 28;17(1):232. doi: 10.1186/s12862-017-1081-1.
6
Role of free DNA ends and protospacer adjacent motifs for CRISPR DNA uptake in Pyrococcus furiosus.
Nucleic Acids Res. 2017 Nov 2;45(19):11281-11294. doi: 10.1093/nar/gkx839.
7
How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.
Nature. 2017 Oct 5;550(7674):137-141. doi: 10.1038/nature24020. Epub 2017 Sep 4.
8
Structures of the CRISPR genome integration complex.
Science. 2017 Sep 15;357(6356):1113-1118. doi: 10.1126/science.aao0679. Epub 2017 Jul 20.
9
Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5122-E5128. doi: 10.1073/pnas.1618421114. Epub 2017 Jun 13.
10
CRISPR-Cas: Adapting to change.
Science. 2017 Apr 7;356(6333). doi: 10.1126/science.aal5056. Epub 2017 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验