Suppr超能文献

随机耦合神经网络在马尔可夫切换和输入饱和下的有限时间同步。

Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation.

机构信息

School of Electrical Engineering, Chungbuk National University, 1 Chungdao-ro, Cheongju 28644, South Korea.

Department of Mathematics, Bharathiar University, Coimbatore 641046, India; Department of Mathematics, Sungkyunkwan University, Suwon 440-746, South Korea.

出版信息

Neural Netw. 2018 Sep;105:154-165. doi: 10.1016/j.neunet.2018.05.004. Epub 2018 Jun 14.

Abstract

This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme.

摘要

本文针对具有马尔可夫切换、混合时滞和执行器饱和的随机耦合神经网络(SCNN)的有限时间同步问题进行了研究。此外,SCNN 的耦合强度由相互独立的随机变量来描述。通过利用简单的线性变换,将 SCNN 的随机有限时间同步问题转化为误差系统的均方有限时间镇定问题。通过选择合适的模态相关切换 Lyapunov-Krasovskii 泛函,推导出了一组新的充分条件,以保证误差系统的有限时间稳定性。随后,借助抗饱和控制方案,可以减轻执行器饱和的风险。此外,所得到的条件有助于通过扩大收缩不变集来优化吸引域的估计。最后,通过仿真验证了所提出控制方案的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验