Suppr超能文献

一种具有分类标准的综合模型,用于预测剖宫产术后阴道分娩的成功率。

An integrated model with classification criteria to predict vaginal delivery success after cesarean section.

作者信息

Manzanares Sebastian, Ruiz-Duran Susana, Pinto Andrea, Pineda Alicia, Puertas Alberto

机构信息

Department of Obstetrics & Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain.

出版信息

J Matern Fetal Neonatal Med. 2020 Jan;33(2):236-242. doi: 10.1080/14767058.2018.1488166. Epub 2018 Jul 10.

Abstract

Cesarean delivery (CD) is the most frequently performed surgical procedure worldwide. Trial of labor after cesarean (TOLAC) is associated with an increase in perinatal complications related to uterine rupture. However, in general, vaginal birth after cesarean (VBAC) is considered safe and women have less morbidity than those who undergo an elective repeat CD. To develop an integrated model with the best performance criteria for predicting vaginal delivery success after CD. Retrospective observational study including 2367 women who underwent a TOLAC. A predictive model using classification and regression tree modeling was constructed to predict vaginal delivery using maternal demographic, medical history, and labor predictors. Vaginal delivery was best predicted by spontaneous onset of labor, estimated fetal weight <3775 g, maternal body mass index <25, previous CD as an elective or for fetal distress reasons, and interdelivery interval <2290 days. The algorithm showed a sensitivity of 75%, a specificity of 53%, and the area under the curve was 0.69. The classification and regression tree algorithm can be used to develop a predictive model for the success of TOLAC.

摘要

剖宫产是全球最常施行的外科手术。剖宫产术后试产(TOLAC)与子宫破裂相关的围产期并发症增加有关。然而,一般来说,剖宫产术后阴道分娩(VBAC)被认为是安全的,且与接受择期再次剖宫产的女性相比,其发病率更低。为了开发一个具有最佳性能标准的综合模型,用于预测剖宫产术后阴道分娩的成功率。对2367名接受TOLAC的女性进行回顾性观察研究。构建了一个使用分类与回归树建模的预测模型,以利用产妇人口统计学、病史和分娩预测因素来预测阴道分娩。产程自然发动、估计胎儿体重<3775 g、产妇体重指数<25、既往剖宫产为择期手术或因胎儿窘迫原因、以及两次分娩间隔<2290天,对阴道分娩的预测效果最佳。该算法的敏感性为75%,特异性为53%,曲线下面积为0.69。分类与回归树算法可用于开发TOLAC成功的预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验