Suppr超能文献

用于同时对空化动力学、微流和生物效应进行光学和声学表征的分层声流体谐振器。

Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics, microstreaming, and biological effects.

作者信息

Pereno V, Aron M, Vince O, Mannaris C, Seth A, de Saint Victor M, Lajoinie G, Versluis M, Coussios C, Carugo D, Stride E

机构信息

Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, United Kingdom.

Physics of Fluids Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

出版信息

Biomicrofluidics. 2018 May 30;12(3):034109. doi: 10.1063/1.5023729. eCollection 2018 May.

Abstract

The study of the effects of ultrasound-induced acoustic cavitation on biological structures is an active field in biomedical research. Of particular interest for therapeutic applications is the ability of oscillating microbubbles to promote both cellular and tissue membrane permeabilisation and to improve the distribution of therapeutic agents in tissue through extravasation and convective transport. The mechanisms that underpin the interaction between cavitating agents and tissues are, however, still poorly understood. One challenge is the practical difficulty involved in performing optical microscopy and acoustic emissions monitoring simultaneously in a biologically compatible environment. Here we present and characterise a microfluidic layered acoustic resonator (LAR) developed for simultaneous ultrasound exposure, acoustic emissions monitoring, and microscopy of biological samples. The LAR facilitates ultrasound experiments in which measurements of microbubble dynamics, microstreaming velocity fields, acoustic emissions, and cell-microbubble interactions can be performed simultaneously. The device and analyses presented provide a means of performing mechanistic studies that may benefit the design of predictable and effective cavitation-based ultrasound treatments.

摘要

超声诱导声空化对生物结构影响的研究是生物医学研究中的一个活跃领域。对于治疗应用而言,振荡微泡促进细胞膜和组织膜通透性以及通过血管外渗和对流运输改善治疗剂在组织中分布的能力尤其令人感兴趣。然而,空化剂与组织之间相互作用的潜在机制仍知之甚少。一个挑战是在生物相容环境中同时进行光学显微镜检查和声发射监测所涉及的实际困难。在此,我们展示并表征了一种为同时进行超声暴露、声发射监测和生物样品显微镜检查而开发的微流控层状声学谐振器(LAR)。LAR便于进行超声实验,在这些实验中可以同时测量微泡动力学、微流速度场、声发射以及细胞与微泡的相互作用。所展示的装置和分析提供了一种进行机理研究的方法,这可能有益于可预测且有效的基于空化的超声治疗的设计。

相似文献

3
Dancing with the Cells: Acoustic Microflows Generated by Oscillating Cells.
Small. 2020 Mar;16(9):e1903788. doi: 10.1002/smll.201903788. Epub 2019 Dec 12.
4
Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy.
Phys Med Biol. 2014 Nov 21;59(22):6941-57. doi: 10.1088/0031-9155/59/22/6941. Epub 2014 Oct 28.
7
An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions.
Ultrason Sonochem. 2023 Feb;93:106291. doi: 10.1016/j.ultsonch.2023.106291. Epub 2023 Jan 5.
8
Cavitation-enhanced extravasation for drug delivery.
Ultrasound Med Biol. 2011 Nov;37(11):1838-52. doi: 10.1016/j.ultrasmedbio.2011.08.004. Epub 2011 Oct 2.
9
Control of Acoustic Cavitation for Efficient Sonoporation with Phase-Shift Nanoemulsions.
Ultrasound Med Biol. 2019 Mar;45(3):846-858. doi: 10.1016/j.ultrasmedbio.2018.12.001. Epub 2019 Jan 11.
10
Acoustic force measurements on polymer-coated microbubbles in a microfluidic device.
J Acoust Soc Am. 2017 May;141(5):3364. doi: 10.1121/1.4979933.

引用本文的文献

1
Cyclic jetting enables microbubble-mediated drug delivery.
Nat Phys. 2025;21(4):590-598. doi: 10.1038/s41567-025-02785-0. Epub 2025 Feb 21.
2
Ultrasound-triggered drug release and cytotoxicity of microbubbles with diverse drug attributes.
Ultrason Sonochem. 2025 Jan;112:107182. doi: 10.1016/j.ultsonch.2024.107182. Epub 2024 Dec 1.
3
High-frequency MHz-order vibration enables cell membrane remodeling and lipid microdomain manipulation.
Biophys J. 2025 Jan 7;124(1):25-39. doi: 10.1016/j.bpj.2024.10.007. Epub 2024 Oct 16.
4
An Acoustic Device for Ultra High-Speed Quantification of Cell Strain During Cell-Microbubble Interaction.
ACS Biomater Sci Eng. 2023 Oct 9;9(10):5912-5923. doi: 10.1021/acsbiomaterials.3c00757. Epub 2023 Sep 25.
6
Cavitation Characterization of Size-Isolated Microbubbles in a Vessel Phantom Using Focused Ultrasound.
Pharmaceutics. 2022 Sep 12;14(9):1925. doi: 10.3390/pharmaceutics14091925.
7
Acoustofluidic black holes for multifunctional in-droplet particle manipulation.
Sci Adv. 2022 Apr;8(13):eabm2592. doi: 10.1126/sciadv.abm2592. Epub 2022 Apr 1.
8
Ultrasound-induced molecular delivery to erythrocytes using a microfluidic system.
Biomicrofluidics. 2020 Apr 21;14(2):024114. doi: 10.1063/1.5144617. eCollection 2020 Mar.
10
Sonoporation of Cells by a Parallel Stable Cavitation Microbubble Array.
Adv Sci (Weinh). 2019 Jun 17;6(17):1900557. doi: 10.1002/advs.201900557. eCollection 2019 Sep 4.

本文引用的文献

1
Mixing high-viscosity fluids via acoustically driven bubbles.
J Micromech Microeng. 2017;27(1). Epub 2016 Oct 25.
2
Bubble-based acoustic micropropulsors: active surfaces and mixers.
Lab Chip. 2017 Apr 11;17(8):1515-1528. doi: 10.1039/c7lc00240h.
3
Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures.
Acta Biomater. 2017 Feb;49:368-378. doi: 10.1016/j.actbio.2016.11.049. Epub 2016 Nov 21.
4
Modulation of the molecular arrangement in artificial and biological membranes by phospholipid-shelled microbubbles.
Biomaterials. 2017 Jan;113:105-117. doi: 10.1016/j.biomaterials.2016.10.034. Epub 2016 Oct 24.
5
Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo.
Ultrasound Med Biol. 2016 Dec;42(12):3022-3036. doi: 10.1016/j.ultrasmedbio.2016.08.002. Epub 2016 Sep 22.
6
Biophysical insight into mechanisms of sonoporation.
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):9983-8. doi: 10.1073/pnas.1606915113. Epub 2016 Aug 22.
7
Viability of endothelial cells after ultrasound-mediated sonoporation: Influence of targeting, oscillation, and displacement of microbubbles.
J Control Release. 2016 Sep 28;238:197-211. doi: 10.1016/j.jconrel.2016.07.037. Epub 2016 Jul 25.
8
In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications.
Biomicrofluidics. 2016 Jan 28;10(1):011501. doi: 10.1063/1.4940429. eCollection 2016 Jan.
9
Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles.
Biomaterials. 2016 Mar;83:294-307. doi: 10.1016/j.biomaterials.2016.01.022. Epub 2016 Jan 6.
10
Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening.
Phys Med Biol. 2015 Oct 7;60(19):7695-712. doi: 10.1088/0031-9155/60/19/7695.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验