From the Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (S.D., D.D., A.S., D.B.F., B.O.).
Division of Cardiology, Department of Medicine, University of Cincinnati, OH (D.D.).
Circ Res. 2018 Jul 20;123(3):356-371. doi: 10.1161/CIRCRESAHA.118.312708. Epub 2018 Jun 13.
Despite increasing prevalence and incidence of heart failure (HF), therapeutic options remain limited. In early stages of HF, sudden cardiac death (SCD) from ventricular arrhythmias claims many lives. Reactive oxygen species (ROS) have been implicated in both arrhythmias and contractile dysfunction. However, little is known about how ROS in specific subcellular compartments contribute to HF or SCD pathophysiology. The role of ROS in chronic proteome remodeling has not been explored.
We will test the hypothesis that elevated mitochondrial ROS (mROS) is a principal source of oxidative stress in HF and in vivo reduction of mROS mitigates SCD.
Using a unique guinea pig model of nonischemic HF that recapitulates important features of human HF, including prolonged QT interval and high incidence of spontaneous arrhythmic SCD, compartment-specific ROS sensors revealed increased mROS in resting and contracting left ventricular myocytes in failing hearts. Importantly, the mitochondrially targeted antioxidant (MitoTEMPO) normalized global cellular ROS. Further, in vivo MitoTEMPO treatment of HF animals prevented and reversed HF, eliminated SCD by decreasing dispersion of repolarization and ventricular arrhythmias, suppressed chronic HF-induced remodeling of the expression proteome, and prevented specific phosphoproteome alterations. Pathway analysis of mROS-sensitive networks indicated that increased mROS in HF disrupts the normal coupling between cytosolic signals and nuclear gene programs driving mitochondrial function, antioxidant enzymes, Ca handling, and action potential repolarization, suggesting new targets for therapeutic intervention.
mROS drive both acute emergent events, such as electrical instability responsible for SCD, and those that mediate chronic HF remodeling, characterized by suppression or altered phosphorylation of metabolic, antioxidant, and ion transport protein networks. In vivo reduction of mROS prevents and reverses electrical instability, SCD, and HF. Our findings support the feasibility of targeting the mitochondria as a potential new therapy for HF and SCD while identifying new mROS-sensitive protein modifications.
尽管心力衰竭(HF)的患病率和发病率不断上升,但治疗选择仍然有限。在 HF 的早期阶段,室性心律失常导致的心脏性猝死(SCD)夺走了许多人的生命。活性氧(ROS)与心律失常和收缩功能障碍都有关。然而,人们对特定亚细胞区室中的 ROS 如何导致 HF 或 SCD 病理生理学知之甚少。ROS 在慢性蛋白质组重塑中的作用尚未得到探索。
我们将检验假设,即升高的线粒体 ROS(mROS)是 HF 中的主要氧化应激源,并且体内减少 mROS 可减轻 SCD。
使用一种独特的非缺血性 HF 豚鼠模型,该模型重现了人类 HF 的重要特征,包括 QT 间期延长和自发性心律失常 SCD 的高发,细胞区室特异性 ROS 传感器显示衰竭心脏中静息和收缩的左心室心肌细胞中的 mROS 增加。重要的是,靶向线粒体的抗氧化剂(MitoTEMPO)使细胞内 ROS 恢复正常。此外,HF 动物的体内 MitoTEMPO 治疗可预防和逆转 HF,通过降低复极化离散度和室性心律失常来消除 SCD,抑制慢性 HF 诱导的表达蛋白质组重塑,并防止特定的磷酸化蛋白质组改变。mROS 敏感网络的途径分析表明,HF 中增加的 mROS 破坏了细胞溶质信号与驱动线粒体功能、抗氧化酶、Ca 处理和动作电位复极的核基因程序之间的正常偶联,提示了新的治疗干预靶点。
mROS 驱动导致 SCD 的电不稳定性等急性突发事件,以及介导慢性 HF 重塑的事件,其特征为代谢、抗氧化和离子转运蛋白网络的抑制或改变磷酸化。体内减少 mROS 可预防和逆转电不稳定性、SCD 和 HF。我们的研究结果支持将线粒体作为 HF 和 SCD 的潜在新疗法的可行性,同时确定新的 mROS 敏感蛋白修饰。