Suppr超能文献

线粒体 ROS 驱动心力衰竭中的突发性心脏死亡和慢性蛋白质组重塑。

Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure.

机构信息

From the Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (S.D., D.D., A.S., D.B.F., B.O.).

Division of Cardiology, Department of Medicine, University of Cincinnati, OH (D.D.).

出版信息

Circ Res. 2018 Jul 20;123(3):356-371. doi: 10.1161/CIRCRESAHA.118.312708. Epub 2018 Jun 13.

Abstract

RATIONALE

Despite increasing prevalence and incidence of heart failure (HF), therapeutic options remain limited. In early stages of HF, sudden cardiac death (SCD) from ventricular arrhythmias claims many lives. Reactive oxygen species (ROS) have been implicated in both arrhythmias and contractile dysfunction. However, little is known about how ROS in specific subcellular compartments contribute to HF or SCD pathophysiology. The role of ROS in chronic proteome remodeling has not been explored.

OBJECTIVE

We will test the hypothesis that elevated mitochondrial ROS (mROS) is a principal source of oxidative stress in HF and in vivo reduction of mROS mitigates SCD.

METHODS AND RESULTS

Using a unique guinea pig model of nonischemic HF that recapitulates important features of human HF, including prolonged QT interval and high incidence of spontaneous arrhythmic SCD, compartment-specific ROS sensors revealed increased mROS in resting and contracting left ventricular myocytes in failing hearts. Importantly, the mitochondrially targeted antioxidant (MitoTEMPO) normalized global cellular ROS. Further, in vivo MitoTEMPO treatment of HF animals prevented and reversed HF, eliminated SCD by decreasing dispersion of repolarization and ventricular arrhythmias, suppressed chronic HF-induced remodeling of the expression proteome, and prevented specific phosphoproteome alterations. Pathway analysis of mROS-sensitive networks indicated that increased mROS in HF disrupts the normal coupling between cytosolic signals and nuclear gene programs driving mitochondrial function, antioxidant enzymes, Ca handling, and action potential repolarization, suggesting new targets for therapeutic intervention.

CONCLUSIONS

mROS drive both acute emergent events, such as electrical instability responsible for SCD, and those that mediate chronic HF remodeling, characterized by suppression or altered phosphorylation of metabolic, antioxidant, and ion transport protein networks. In vivo reduction of mROS prevents and reverses electrical instability, SCD, and HF. Our findings support the feasibility of targeting the mitochondria as a potential new therapy for HF and SCD while identifying new mROS-sensitive protein modifications.

摘要

背景

尽管心力衰竭(HF)的患病率和发病率不断上升,但治疗选择仍然有限。在 HF 的早期阶段,室性心律失常导致的心脏性猝死(SCD)夺走了许多人的生命。活性氧(ROS)与心律失常和收缩功能障碍都有关。然而,人们对特定亚细胞区室中的 ROS 如何导致 HF 或 SCD 病理生理学知之甚少。ROS 在慢性蛋白质组重塑中的作用尚未得到探索。

目的

我们将检验假设,即升高的线粒体 ROS(mROS)是 HF 中的主要氧化应激源,并且体内减少 mROS 可减轻 SCD。

方法和结果

使用一种独特的非缺血性 HF 豚鼠模型,该模型重现了人类 HF 的重要特征,包括 QT 间期延长和自发性心律失常 SCD 的高发,细胞区室特异性 ROS 传感器显示衰竭心脏中静息和收缩的左心室心肌细胞中的 mROS 增加。重要的是,靶向线粒体的抗氧化剂(MitoTEMPO)使细胞内 ROS 恢复正常。此外,HF 动物的体内 MitoTEMPO 治疗可预防和逆转 HF,通过降低复极化离散度和室性心律失常来消除 SCD,抑制慢性 HF 诱导的表达蛋白质组重塑,并防止特定的磷酸化蛋白质组改变。mROS 敏感网络的途径分析表明,HF 中增加的 mROS 破坏了细胞溶质信号与驱动线粒体功能、抗氧化酶、Ca 处理和动作电位复极的核基因程序之间的正常偶联,提示了新的治疗干预靶点。

结论

mROS 驱动导致 SCD 的电不稳定性等急性突发事件,以及介导慢性 HF 重塑的事件,其特征为代谢、抗氧化和离子转运蛋白网络的抑制或改变磷酸化。体内减少 mROS 可预防和逆转电不稳定性、SCD 和 HF。我们的研究结果支持将线粒体作为 HF 和 SCD 的潜在新疗法的可行性,同时确定新的 mROS 敏感蛋白修饰。

相似文献

1
Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure.
Circ Res. 2018 Jul 20;123(3):356-371. doi: 10.1161/CIRCRESAHA.118.312708. Epub 2018 Jun 13.
3
Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure.
Circ Res. 2014 Jun 20;115(1):44-54. doi: 10.1161/CIRCRESAHA.115.303062. Epub 2014 Apr 29.
6
Oxidative stress and heart failure.
Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2181-90. doi: 10.1152/ajpheart.00554.2011. Epub 2011 Sep 23.
7
Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure.
Curr Heart Fail Rep. 2017 Aug;14(4):338-349. doi: 10.1007/s11897-017-0347-7.
8
Metabolic stress, reactive oxygen species, and arrhythmia.
J Mol Cell Cardiol. 2012 Feb;52(2):454-63. doi: 10.1016/j.yjmcc.2011.09.018. Epub 2011 Sep 25.
9
Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death.
J Proteome Res. 2016 Sep 2;15(9):3009-28. doi: 10.1021/acs.jproteome.6b00149. Epub 2016 Aug 3.
10
Calcium Signaling and Reactive Oxygen Species in Mitochondria.
Circ Res. 2018 May 11;122(10):1460-1478. doi: 10.1161/CIRCRESAHA.118.310082.

引用本文的文献

1
Inhibition of Cardiac p38 Highlights the Role of the Phosphoproteome in Heart Failure Progression.
ACS Omega. 2025 Aug 6;10(32):36082-36097. doi: 10.1021/acsomega.5c03687. eCollection 2025 Aug 19.
2
MitoQ Protects Against Oxidative Stress-Induced Mitochondrial Dysregulation in Human Cardiomyocytes.
J Mol Cell Cardiol Plus. 2025 Jun 26;13:100469. doi: 10.1016/j.jmccpl.2025.100469. eCollection 2025 Sep.
3
Oxidative Stress: Signaling Pathways, Biological Functions, and Disease.
MedComm (2020). 2025 Jul 1;6(7):e70268. doi: 10.1002/mco2.70268. eCollection 2025 Jul.
4
Mechano-energetic uncoupling in heart failure.
Nat Rev Cardiol. 2025 Jun 22. doi: 10.1038/s41569-025-01167-6.
5
Energy metabolism in cardiovascular diseases: unlocking the hidden powerhouse of cardiac pathophysiology.
Front Endocrinol (Lausanne). 2025 Jun 5;16:1617305. doi: 10.3389/fendo.2025.1617305. eCollection 2025.
6
Current state of heart failure treatment: are mesenchymal stem cells and their exosomes a future therapy?
Front Cardiovasc Med. 2025 Apr 28;12:1518036. doi: 10.3389/fcvm.2025.1518036. eCollection 2025.
7
Retinoic acid signaling and metabolism in heart failure.
Am J Physiol Heart Circ Physiol. 2025 Apr 1;328(4):H792-H813. doi: 10.1152/ajpheart.00871.2024. Epub 2025 Feb 11.
9
Inhibition of Cardiac p38 Highlights the Role of the Phosphoproteome in Heart Failure Progression.
bioRxiv. 2024 Nov 20:2024.11.20.624554. doi: 10.1101/2024.11.20.624554.
10
Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Guardians against Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Heart Diseases.
ACS Pharmacol Transl Sci. 2024 Oct 16;7(11):3279-3298. doi: 10.1021/acsptsci.4c00240. eCollection 2024 Nov 8.

本文引用的文献

1
Declining Risk of Sudden Death in Heart Failure.
N Engl J Med. 2017 Jul 6;377(1):41-51. doi: 10.1056/NEJMoa1609758.
2
Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure.
Curr Heart Fail Rep. 2017 Aug;14(4):338-349. doi: 10.1007/s11897-017-0347-7.
4
The mitochondria-targeting peptide elamipretide diminishes circulating HtrA2 in ST-segment elevation myocardial infarction.
Eur Heart J Acute Cardiovasc Care. 2019 Dec;8(8):695-702. doi: 10.1177/2048872617710789. Epub 2017 May 23.
5
Oxidative Stress.
Annu Rev Biochem. 2017 Jun 20;86:715-748. doi: 10.1146/annurev-biochem-061516-045037. Epub 2017 Apr 24.
6
Myocardial Infarction With Nonobstructive Coronary Arteries (MINOCA): The Past, Present, and Future Management.
Circulation. 2017 Apr 18;135(16):1490-1493. doi: 10.1161/CIRCULATIONAHA.117.027666.
7
Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs).
J Mol Cell Cardiol. 2016 Dec;101:44-49. doi: 10.1016/j.yjmcc.2016.08.018. Epub 2016 Aug 27.
8
Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure.
N Engl J Med. 2016 Sep 29;375(13):1221-30. doi: 10.1056/NEJMoa1608029. Epub 2016 Aug 27.
9
Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death.
J Proteome Res. 2016 Sep 2;15(9):3009-28. doi: 10.1021/acs.jproteome.6b00149. Epub 2016 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验