Suppr超能文献

基于混合预测引擎和分解模型的太阳能输出新预测方法。

A new solar power output prediction based on hybrid forecast engine and decomposition model.

机构信息

College of Electrical & Information Engineering, Shannxi University of Science & Technology, Xi'an, 710021, China; School of Electrical Engineering, Xizang Agriculture and Animal Husbandry College, Linzhi, 860000, China.

College of Electrical & Information Engineering, Shannxi University of Science & Technology, Xi'an, 710021, China.

出版信息

ISA Trans. 2018 Oct;81:105-120. doi: 10.1016/j.isatra.2018.06.004. Epub 2018 Jun 19.

Abstract

Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method.

摘要

针对光伏 (PV) 能源作为电网中清洁能源的增长趋势及其不确定性,研究人员在最近几十年提出了光伏能源预测。这个问题直接影响到电网的运行,但是由于这个信号的高度波动性,需要一个准确的预测模型。本文提出了一种基于希尔伯特黄变换 (HHT) 的新预测模型,该模型结合了改进的经验模态分解 (IEMD)、特征选择和预测引擎。该方法分为三个主要部分。在第一部分中,信号通过所提出的 IEMD 进行分解,作为一种精确的分解工具。为了提高方法的准确性,在 EMD 中使用了新的插值方法,而不是三次样条曲线 (CSC) 拟合。然后,将得到的输出输入到新的特征选择过程中,以选择最佳的候选输入。最后,信号由基于智能算法的支持向量回归 (SVR) 组成的混合预测引擎进行预测。与其他知名模型相比,该方法在许多实际工程测试案例中进行了验证,验证结果证明了该方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验