Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, NW1 1AT, UK.
Respiratory Biomedical Research Centre, Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE3 9QP, UK.
Nat Commun. 2018 Jun 19;9(1):2308. doi: 10.1038/s41467-018-04579-w.
Whole blood transcriptional signatures distinguishing active tuberculosis patients from asymptomatic latently infected individuals exist. Consensus has not been achieved regarding the optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Here we show a blood transcriptional signature of active tuberculosis using RNA-Seq, confirming microarray results, that discriminates active tuberculosis from latently infected and healthy individuals, validating this signature in an independent cohort. Using an advanced modular approach, we utilise the information from the entire transcriptome, which includes overabundance of type I interferon-inducible genes and underabundance of IFNG and TBX21, to develop a signature that discriminates active tuberculosis patients from latently infected individuals or those with acute viral and bacterial infections. We suggest that methods targeting gene selection across multiple discriminant modules can improve the development of diagnostic biomarkers with improved performance. Finally, utilising the modular approach, we demonstrate dynamic heterogeneity in a longitudinal study of recent tuberculosis contacts.
全血转录特征可区分活动性肺结核患者与无症状潜伏感染者。然而,对于作为诊断生物标志物的最优降维基因集,尚未达成共识,这些标志物还需要能够与其他疾病区分开来。在这里,我们使用 RNA-Seq 展示了一个活动性肺结核的血液转录特征,该特征通过微阵列结果得到了证实,可以区分活动性肺结核与潜伏感染和健康个体,并在一个独立的队列中对该特征进行了验证。使用一种先进的模块化方法,我们利用整个转录组的信息,包括 I 型干扰素诱导基因的过度表达和 IFNG 和 TBX21 的表达不足,开发了一种可以区分活动性肺结核患者与潜伏感染者或急性病毒和细菌感染者的特征。我们认为,针对多个判别模块中的基因选择的方法可以提高具有更好性能的诊断生物标志物的开发。最后,我们利用模块化方法,在近期结核病接触者的纵向研究中展示了动态异质性。