Schnedler M, Portz V, Semmler U, Moors M, Waser R, Dunin-Borkowski R E, Ebert Ph
Peter Grünberg Institut, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
Institut für Werkstoffe der Elektrotechnik II (IWE II), RWTH Aachen University, Aachen, 52074, Germany.
Sci Rep. 2018 Jun 21;8(1):9483. doi: 10.1038/s41598-018-27835-x.
Resistive switching random access memories (ReRAM) are promising candidates for energy efficient, fast, and non-volatile universal memories that unite the advantages of RAM and hard drives. Unfortunately, the current ReRAM materials are incompatible with optical interconnects and wires. Optical signal transmission is, however, inevitable for next generation memories in order to overcome the capacity-bandwidth trade-off. Thus, we present here a proof-of-concept of a new type of resistive switching realized in III-V semiconductors, which meet all requirements for the implementation of optoelectronic circuits. This resistive switching effect is based on controlling the spatial positions of vacancy-induced deep traps by stimulated migration, opening and closing a conduction channel through a semi-insulating compensated surface layer. The mechanism is widely applicable to opto-electronically usable III-V compound semiconductors.
电阻式开关随机存取存储器(ReRAM)是兼具随机存取存储器(RAM)和硬盘优点的节能、快速且非易失性通用存储器的有力候选者。不幸的是,目前的ReRAM材料与光学互连和线路不兼容。然而,为了克服容量 - 带宽权衡问题,光信号传输对于下一代存储器来说是不可避免的。因此,我们在此展示了一种在III - V族半导体中实现的新型电阻式开关的概念验证,该半导体满足光电子电路实现的所有要求。这种电阻式开关效应基于通过受激迁移控制空位诱导的深陷阱的空间位置,通过半绝缘补偿表面层打开和关闭传导通道。该机制广泛适用于可用于光电子的III - V族化合物半导体。