Ding Bojian, Martin Dwight W, Rampello Anthony J, Glynn Steven E
Biochemistry. 2018 Jul 17;57(28):4225-4235. doi: 10.1021/acs.biochem.8b00565. Epub 2018 Jul 5.
Human AFG3L2 is a compartmental AAA+ protease that performs ATP-fueled degradation at the matrix face of the inner mitochondrial membrane. Identifying how AFG3L2 selects substrates from the diverse complement of matrix-localized proteins is essential for understanding mitochondrial protein biogenesis and quality control. Here, we create solubilized forms of AFG3L2 to examine the enzyme's substrate specificity mechanisms. We show that conserved residues within the presequence of the mitochondrial ribosomal protein, MrpL32, target the subunit to the protease for processing into a mature form. Moreover, these residues can act as a degron, delivering diverse model proteins to AFG3L2 for degradation. By determining the sequence of degradation products from multiple substrates using mass spectrometry, we construct a peptidase specificity profile that displays constrained product lengths and is dominated by the identity of the residue at the P1' position, with a strong preference for hydrophobic and small polar residues. This specificity profile is validated by examining the cleavage of both fluorogenic reporter peptides and full polypeptide substrates bearing different P1' residues. Together, these results demonstrate that AFG3L2 contains multiple modes of specificity, discriminating between potential substrates by recognizing accessible degron sequences and performing peptide bond cleavage at preferred patterns of residues within the compartmental chamber.
人类AFG3L2是一种定位于特定区域的AAA+蛋白酶,在内线粒体膜的基质面进行由ATP驱动的降解作用。确定AFG3L2如何从基质定位蛋白的多种成分中选择底物,对于理解线粒体蛋白质生物合成和质量控制至关重要。在这里,我们制备了可溶形式的AFG3L2,以研究该酶的底物特异性机制。我们发现,线粒体核糖体蛋白MrpL32前序列中的保守残基将该亚基靶向蛋白酶,以便加工成成熟形式。此外,这些残基可以作为降解结构域,将多种模型蛋白递送至AFG3L2进行降解。通过使用质谱法确定多种底物的降解产物序列,我们构建了一个肽酶特异性图谱,该图谱显示出受限的产物长度,并且主要由P1'位置的残基身份决定,强烈偏好疏水性和小极性残基。通过检查荧光报告肽和带有不同P1'残基的完整多肽底物的切割情况,验证了这种特异性图谱。总之,这些结果表明,AFG3L2包含多种特异性模式,通过识别可及的降解结构域序列区分潜在底物,并在特定区域内以偏好的残基模式进行肽键切割。