Suppr超能文献

模拟皮质网络损伤对同步和 EEG 复杂性的差异影响。

Differential Effects of Simulated Cortical Network Lesions on Synchrony and EEG Complexity.

机构信息

1 Department of Psychology, University of Jaén, Jaén 23071, Spain.

2 Department of Psychology, University of Jaén, Paraje las Lagunillas s/n, Jaén, 23071, Spain.

出版信息

Int J Neural Syst. 2019 May;29(4):1850024. doi: 10.1142/S0129065718500247. Epub 2018 May 15.

Abstract

Brain function has been proposed to arise as a result of the coordinated activity between distributed brain areas. An important issue in the study of brain activity is the characterization of the synchrony among these areas and the resulting complexity of the system. However, the variety of ways to define and, hence, measure brain synchrony and complexity has sometimes led to inconsistent results. Here, we study the relationship between synchrony and commonly used complexity estimators of electroencephalogram (EEG) activity and we explore how simulated lesions in anatomically based cortical networks would affect key functional measures of activity. We explored this question using different types of neural network lesions while the brain dynamics was modeled with a time-delayed set of 66 Kuramoto oscillators. Each oscillator modeled a region of the cortex (node), and the connectivity and spatial location between different areas informed the creation of a network structure (edges). Each type of lesion consisted on successive lesions of nodes or edges during the simulation of the neural dynamics. For each type of lesion, we measured the synchrony among oscillators and three complexity estimators (Higuchi's Fractal Dimension, Sample Entropy and Lempel-Ziv Complexity) of the simulated EEGs. We found a general negative correlation between EEG complexity metrics and synchrony but Sample Entropy and Lempel-Ziv showed a positive correlation with synchrony when the edges of the network were deleted. This suggests an intricate relationship between synchrony of the system and its estimated complexity. Hence, complexity seems to depend on the multiple states of interaction between the oscillators of the system. Our results can contribute to the interpretation of the functional meaning of EEG complexity.

摘要

大脑功能被认为是由分布在大脑区域之间的协调活动引起的。在大脑活动的研究中,一个重要的问题是对这些区域之间的同步性进行特征描述,以及由此产生的系统复杂性。然而,定义和测量大脑同步性和复杂性的方法多种多样,这有时导致了结果的不一致。在这里,我们研究了脑电图(EEG)活动的同步性和常用复杂度估计量之间的关系,并探讨了在基于解剖的皮质网络中模拟损伤会如何影响活动的关键功能测量。我们使用不同类型的神经网络损伤来探索这个问题,同时使用一组时滞的 66 个 Kuramoto 振荡器来模拟大脑动力学。每个振荡器模拟一个皮质区域(节点),不同区域之间的连接和空间位置决定了网络结构(边)的创建。每种类型的损伤都包括在模拟神经动力学过程中对节点或边进行连续的损伤。对于每种类型的损伤,我们测量了振荡器之间的同步性以及三个复杂度估计量(Higuchi 的分形维数、样本熵和 Lempel-Ziv 复杂度)的模拟 EEG。我们发现 EEG 复杂度指标与同步性之间存在一般的负相关,但当网络的边被删除时,样本熵和 Lempel-Ziv 与同步性呈正相关。这表明系统的同步性和其估计的复杂性之间存在复杂的关系。因此,复杂性似乎取决于系统振荡器之间相互作用的多种状态。我们的结果有助于解释 EEG 复杂性的功能意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验