Suppr超能文献

PredCSO:一种用于预测蛋白质中 S-亚磺酰化位点的集成方法。

PredCSO: an ensemble method for the prediction of S-sulfenylation sites in proteins.

机构信息

School of Software, Central South University, Changsha, 410075, China.

出版信息

Mol Omics. 2018 Aug 6;14(4):257-265. doi: 10.1039/c8mo00089a.

Abstract

Protein S-sulfenylation is a type of reversible post-translational modification (PTM) through which cysteine (CYS) thiols of proteins are reversibly oxidized to cysteine sulfenic acids (CSO). Recent studies have shown that this event plays an essential role in cell signaling, transcriptional regulation and protein functions. Therefore, the identification of S-sulfenylation sites is important to understand the functions of S-sulfenylated proteins. In this study, we proposed PredCSO, a computational method for predicting S-sulfenylation sites in proteins. PredCSO is built on four kinds of features, including position-specific scoring matrix, position-specific amino acid propensity, the absolute solvent accessibility and four-body statistical pseudo-potential. In particular, 21 crucial features were refined out using a two-step feature selection procedure consisting of a max-relevance algorithm and a sequential backward elimination algorithm. To overcome the problem of imbalanced sample sizes, we adopt an ensemble method, which combines bootstrap resampling, gradient tree boosting and majority voting. Our performance evaluation shows that PredCSO achieves state-of-the-art performance in identifying S-sulfenylation sites in proteins.

摘要

蛋白质 S-亚磺化是一种可逆的翻译后修饰(PTM),通过该修饰,蛋白质的半胱氨酸(CYS)巯基可被可逆氧化为半胱氨酸亚磺酸(CSO)。最近的研究表明,这一事件在细胞信号转导、转录调控和蛋白质功能中起着至关重要的作用。因此,鉴定 S-亚磺化位点对于了解 S-亚磺化蛋白的功能非常重要。在这项研究中,我们提出了 PredCSO,这是一种用于预测蛋白质中 S-亚磺化位点的计算方法。PredCSO 基于四种特征构建,包括位置特异性评分矩阵、位置特异性氨基酸倾向、绝对溶剂可及性和四体统计伪势。特别是,通过使用最大相关性算法和顺序后向消除算法组成的两步特征选择过程,细化出 21 个关键特征。为了克服样本大小不平衡的问题,我们采用了一种集成方法,该方法结合了引导重采样、梯度树提升和多数投票。我们的性能评估表明,PredCSO 在识别蛋白质中的 S-亚磺化位点方面达到了最先进的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验