Institut für Chemie , Technische Universität Berlin , PC 14, Str. des 17. Juni 135 , 10623 Berlin , Germany.
Institut für Anorganische und Analytische Chemie , Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany.
ACS Appl Mater Interfaces. 2018 Jul 11;10(27):23380-23391. doi: 10.1021/acsami.8b02273. Epub 2018 Jun 26.
Surface-enhanced infrared absorption spectroscopy is used in situ to determine the electrochemical stability of organic interfaces deposited onto the surface of nanostructured, thin-film gold electrodes via the electrochemical reduction of diazonium salts. These interfaces are shown to exhibit a wide electrochemical stability window in both acetonitrile and phosphate buffer, far surpassing the stability window of thiol-derived self-assembled monolayers. Using the same in situ technique, the application of radical scavengers during the electrochemical reduction of diazonium salts is shown to moderate interface formation. Consequently, the heterogeneous charge-transfer resistance can be reduced sufficiently to enhance the direct electron transfer between an immobilized redox-active enzyme and the electrode. This was demonstrated for the oxygen-tolerant [NiFe] hydrogenase from the "Knallgas" bacterium Ralstonia eutropha by relating its electrochemical activity for hydrogen oxidation to the interface properties.
表面增强红外吸收光谱用于原位测定通过电化学还原重氮盐沉积在纳米结构薄膜金电极表面的有机界面的电化学稳定性。这些界面在乙腈和磷酸盐缓冲液中均表现出宽的电化学稳定性窗口,远远超过了硫醇衍生的自组装单层的稳定性窗口。使用相同的原位技术,在电化学还原重氮盐期间使用自由基清除剂显示出可以调节界面形成。因此,可以降低异质电荷转移电阻以增强固定化氧化还原活性酶与电极之间的直接电子转移。通过将其对氢气氧化的电化学活性与界面性质相关联,证明了来自“Knallgas”细菌 Ralstonia eutropha 的耐氧[NiFe]氢化酶的这种情况。