Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, QC G1J 2G3, Canada.
Department of Computer Science, University of Warwick, Coventry, United Kingdom.
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7434-7439. doi: 10.1073/pnas.1720659115. Epub 2018 Jun 26.
Neuronal communication relies on action potential discharge, with the frequency and the temporal precision of action potentials encoding information. Hippocampal mossy fibers have long been recognized as conditional detonators owing to prominent short-term facilitation of glutamate release displayed during granule cell burst firing. However, the spiking patterns required to trigger action potential firing in CA3 pyramidal neurons remain poorly understood. Here, we show that glutamate release from mossy fiber terminals triggers action potential firing of the target CA3 pyramidal neurons independently of the average granule cell burst frequency, a phenomenon we term action potential counting. We find that action potential counting in mossy fibers gates glutamate release over a broad physiological range of frequencies and action potential numbers. Using rapid Ca imaging we also show that the magnitude of evoked Ca influx stays constant during action potential trains and that accumulated residual Ca is gradually extruded on a time scale of several hundred milliseconds. Using experimentally constrained 3D model of presynaptic Ca influx, buffering, and diffusion, and a Monte Carlo model of Ca-activated vesicle fusion, we argue that action potential counting at mossy fiber boutons can be explained by a unique interplay between Ca dynamics and buffering at release sites. This is largely determined by the differential contribution of major endogenous Ca buffers calbindin-D and calmodulin and by the loose coupling between presynaptic voltage-gated Ca channels and release sensors and the relatively slow Ca extrusion rate. Taken together, our results identify a previously unexplored information-coding mechanism in the brain.
神经元的通讯依赖于动作电位的放电,动作电位的频率和时间精度编码着信息。海马苔藓纤维因其在颗粒细胞爆发性放电期间表现出明显的谷氨酸释放的短期易化而长期以来一直被认为是条件引爆器。然而,触发 CA3 锥体神经元产生动作电位的尖峰模式仍然知之甚少。在这里,我们表明,来自苔藓纤维末梢的谷氨酸释放可以独立于平均颗粒细胞爆发频率触发 CA3 锥体神经元的动作电位放电,我们将这种现象称为动作电位计数。我们发现,动作电位计数在苔藓纤维中可以在广泛的生理频率和动作电位数量范围内门控谷氨酸释放。使用快速 Ca 成像,我们还表明,在动作电位序列期间,诱发的 Ca 内流幅度保持不变,并且累积的残留 Ca 会在几百毫秒的时间尺度上逐渐被排出。使用受实验约束的突触前 Ca 流入、缓冲和扩散的 3D 模型,以及 Ca 激活的囊泡融合的蒙特卡罗模型,我们认为,苔藓纤维末梢的动作电位计数可以通过释放位点处的 Ca 动力学和缓冲之间的独特相互作用来解释。这在很大程度上取决于主要内源性 Ca 缓冲蛋白钙结合蛋白-D 和钙调蛋白的差异贡献,以及突触前电压门控 Ca 通道和释放传感器之间的松散耦合以及相对较慢的 Ca 外排率。总之,我们的研究结果确定了大脑中一种以前未被探索的信息编码机制。