Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Schizophr Bull. 2019 Apr 25;45(3):591-599. doi: 10.1093/schbul/sby091.
Recent neuroanatomical pattern recognition studies have shown some promises for developing an objective neuroimaging-based classification related to schizophrenia. This study explored the feasibility of reliably identifying schizophrenia using single and multimodal multivariate neuroimaging features. Multiple brain measures including regional gray matter (GM) volume, cortical thickness, gyrification, fractional anisotropy (FA), and mean diffusivity (MD) were extracted using fully automated procedures. We used Gradient Boosting Decision Tree to identify the most frequently selected features of each set of neuroanatomical metric and fused multimodal measures. The current classification model was trained and validated based on 98 patients with first-episode schizophrenia (FES) and 106 matched healthy controls (HCs). The classification model was trained and tested in an independent dataset of 54 patients with FES and 48 HCs using imaging data acquired on a different magnetic resonance imaging scanner. Using the most frequently selected features from fused structural and diffusion tensor imaging metrics, a classification accuracy of 75.05% was achieved, which was higher than accuracy derived from a single imaging metric. Most prominent discriminative features included cortical thickness of left transverse temporal gyrus and right parahippocampal gyrus, the FA of left corticospinal tract and right external capsule. In the independent cohort, average accuracy was 76.54%, derived from combined features selected from cortical thickness, gyrification, FA, and MD. These features characterized by GM abnormalities and white matter disruptions have discriminative power with respect to the underlying pathological changes in the brain of individuals having schizophrenia. Our results further highlight the potential advantage of multimodal data fusion for identifying schizophrenia.
最近的神经解剖模式识别研究表明,开发一种与精神分裂症相关的基于客观神经影像学的分类方法具有一定的前景。本研究探索了使用单模态和多模态多变量神经影像学特征可靠识别精神分裂症的可行性。使用全自动程序提取了多个脑测量值,包括区域灰质(GM)体积、皮质厚度、脑回形成、各向异性分数(FA)和平均扩散系数(MD)。我们使用梯度提升决策树来识别每组神经解剖学度量中最常选择的特征,并融合多模态测量值。当前的分类模型是基于 98 例首发精神分裂症(FES)患者和 106 例匹配的健康对照组(HC)的影像数据进行训练和验证的。使用来自融合结构和弥散张量成像指标的最常选择的特征,在一个不同的磁共振成像扫描仪上采集的 54 例 FES 患者和 48 例 HCs 的独立数据集上进行了分类模型的训练和测试。使用融合结构和弥散张量成像指标的最常选择的特征,分类准确率达到 75.05%,高于来自单一成像指标的准确率。最显著的鉴别特征包括左侧横颞回和右侧海马旁回的皮质厚度、左侧皮质脊髓束和右侧外囊的 FA。在独立队列中,平均准确率为 76.54%,源自从皮质厚度、脑回形成、FA 和 MD 中选择的组合特征。这些特征以 GM 异常和白质破坏为特征,具有区分患有精神分裂症的个体大脑中潜在病理变化的能力。我们的研究结果进一步强调了多模态数据融合识别精神分裂症的潜在优势。