James A. Haley Veteran's Hospital and The University of South Florida College of Public Health, 13000 Bruce B. Downs Blvd, Tampa, FL, 90012, USA.
Cardiovasc Toxicol. 2018 Dec;18(6):493-506. doi: 10.1007/s12012-018-9462-2.
Poly(ADP-ribosyl)ation is an immediate cellular repair response to DNA damage and is catalyzed primarily by poly(ADP-ribose)polymerase-1 (PARP1), which is the most abundant of the 18 different PARP isoforms and accounts for more than 90% of the catalytic activity of PARP in the cell nucleus. Upon detection of a DNA strand break, PARP1 binds to the DNA, cleaves nicotinamide adenine dinucleotide between nicotinamide and ribose and then modifies the DNA nuclear acceptor proteins by formation of a bond between the protein and the ADP-ribose residue. This generates ribosyl-ribosyl linkages that act as a signal for other DNA-repairing enzymes and DNA base repair. Extensive DNA breakage in cells results in excessive activation of PARP with resultant depletion of the cellular stores of nicotinamide adenine dinucleotide (NAD+) which slows the rate of glycolysis, mitochondrial electron transport, and ultimately ATP formation in these cells. This paper focuses on PARP in DNA repair in atherosclerosis, acute myocardial infarction/reperfusion injury, and congestive heart failure and the role of PARP inhibitors in combating the effects of excessive PARP activation in these diseases. Free oxygen radicals and nitrogen radicals in arteries contribute to disruption of the vascular endothelial glycocalyx, which increase the permeability of the endothelium to inflammatory cells and also low-density lipoproteins and the accumulation of lipid in the vascular intima. Mild inflammation and DNA damage within vascular cells promote PARP1 activation and DNA repair. Moderate DNA damage induces caspase-dependent PARP cleavage and vascular cell apoptosis. Severe DNA damage due to vascular inflammation causes excessive activation of PARP1. This causes endothelial cell depletion of NAD+ and ATP, downregulation of atheroprotective SIRT1, necrotic cell death, and ultimately atherosclerotic plaque disruption. Inhibition of PARP decreases vascular endothelial cell adhesion P-selectin and ICAM-1 molecules, inflammatory cells, pro-death caspase-3, and c-Jun N-terminal kinase (JNK) activation and upregulates prosurvival extracellular signal-regulated kinases and AKT, which decrease vascular cell apoptosis and necrosis and limit atherosclerosis and plaque disruption. In myocardial infarction with coronary occlusion then reperfusion, which occurs with coronary angioplasty or thrombolytic therapy, reperfusion injury occurs in as many as 31% of patients and is caused by inflammatory cells, free oxygen and nitrogen radicals, the rapid transcriptional activation of inflammatory cytokines, and the activation of PARP1. Inhibition of PARP attenuates neutrophil infiltration and inflammatory cytokine expression in the reperfused myocardium and preserves myocardial NAD+ and ATP. In addition, PARP inhibition increases the activation of myocyte survival enzymes protein kinase B (Akt) and protein kinase C epsilon (PKCε), and decreases the activity of myocardial ventricular remodeling enzymes PKCα/β, PKCζ/λ, and PKCδ. As a consequence, cardiomyocyte and vascular endothelial cell necrosis is decreased and myocardial contractility is preserved. In heart failure and circulatory shock in animal models, PARP inhibition significantly attenuates decreases in left ventricular systolic pressure, ventricular contractility and relaxation, stroke volume, and increases survival by limiting or preventing upregulation of adhesion molecules, proinflammatory cytokines, myocardial mononuclear cell infiltration, and PKCα/β and PKC λ/ζ. In this manner, PARP inhibition partially restores the myocardial concentrations of NAD+, limits ventricular remodeling and fibrosis, and prevents significant decreases in myocardial contractility. Based primarily on investigations in preclinical models of atherosclerosis, myocardial infarction, and heart failure, PARP inhibition appears to be beneficial in limiting or inhibiting cardiovascular dysfunction. These studies indicate that investigations of acute and chronic PARP inhibition are warranted in patients with atherosclerotic coronary artery disease.
聚(ADP-核糖)化是一种对 DNA 损伤的即时细胞修复反应,主要由聚(ADP-核糖)聚合酶 1(PARP1)催化,PARP1 是 18 种不同 PARP 同工型中最丰富的一种,占细胞核中 PARP 催化活性的 90%以上。在检测到 DNA 链断裂后,PARP1 结合到 DNA 上,在烟酰胺和核糖之间切割烟酰胺腺嘌呤二核苷酸,然后通过在蛋白质和 ADP-核糖残基之间形成键来修饰 DNA 核受体蛋白。这会产生核糖-核糖键,作为其他 DNA 修复酶和 DNA 碱基修复的信号。细胞内广泛的 DNA 断裂会导致 PARP1 过度激活,从而导致细胞内烟酰胺腺嘌呤二核苷酸(NAD+)储存耗尽,这会减缓糖酵解、线粒体电子传递和最终这些细胞中 ATP 的形成。本文重点介绍 PARP 在动脉粥样硬化、急性心肌梗死/再灌注损伤和充血性心力衰竭中的 DNA 修复作用,以及 PARP 抑制剂在对抗这些疾病中 PARP 过度激活的作用。动脉中的自由基和氮自由基会导致血管内皮糖萼破裂,这会增加内皮细胞对炎症细胞以及低密度脂蛋白和血管内膜中脂质的通透性。血管细胞内的轻度炎症和 DNA 损伤会促进 PARP1 的激活和 DNA 修复。中度 DNA 损伤会诱导依赖半胱天冬酶的 PARP 切割和血管细胞凋亡。由于血管炎症引起的严重 DNA 损伤会导致 PARP1 的过度激活。这会导致内皮细胞 NAD+和 ATP 的耗竭,下调保护性 SIRT1,导致血管细胞坏死,并最终导致动脉粥样硬化斑块破裂。PARP 抑制会减少血管内皮细胞黏附 P-选择素和细胞间黏附分子 1 分子、炎症细胞、促死亡半胱天冬酶-3 和 c-Jun N 末端激酶(JNK)的激活,并上调促生存细胞外信号调节激酶和 AKT,从而减少血管细胞凋亡和坏死,并限制动脉粥样硬化和斑块破裂。在冠状动脉狭窄伴冠状动脉阻塞后再灌注的心肌梗死中,这种情况发生在经皮冠状动脉成形术或溶栓治疗中,多达 31%的患者会发生再灌注损伤,这是由炎症细胞、自由基、炎症细胞因子的快速转录激活和 PARP1 的激活引起的。PARP 抑制可减轻再灌注心肌中的中性粒细胞浸润和炎症细胞因子的表达,并保留心肌 NAD+和 ATP。此外,PARP 抑制增加了肌细胞生存酶蛋白激酶 B(Akt)和蛋白激酶 C ɛ(PKCε)的激活,并降低了心肌室重构酶 PKCα/β、PKCζ/λ 和 PKCδ的活性。因此,心肌细胞和血管内皮细胞的坏死减少,心肌收缩力得以保留。在动物模型中的心力衰竭和循环休克中,PARP 抑制可显著降低左心室收缩压、心室收缩和舒张、每搏量的降低,并通过限制或预防黏附分子、促炎细胞因子、心肌单核细胞浸润以及 PKCα/β和 PKCλ/ζ的上调来增加存活率。通过这种方式,PARP 抑制部分恢复了心肌中 NAD+的浓度,限制了心室重构和纤维化,并防止了心肌收缩力的显著下降。主要基于动脉粥样硬化、心肌梗死和心力衰竭的临床前模型的研究,PARP 抑制似乎有利于限制或抑制心血管功能障碍。这些研究表明,在患有动脉粥样硬化性冠状动脉疾病的患者中,有必要进行急性和慢性 PARP 抑制的研究。