IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France.
Centre de Génomique Fonctionnelle, Pôle Protéomique, Université de Bordeaux, Bordeaux, France.
mBio. 2018 Jul 3;9(4):e00873-18. doi: 10.1128/mBio.00873-18.
The discovery of integrative conjugative elements (ICEs) in wall-less mycoplasmas and the demonstration of their role in massive gene flows within and across species have shed new light on the evolution of these minimal bacteria. Of these, the ICE of the ruminant pathogen (ICEA) represents a prototype and belongs to a new clade of the Mutator-like superfamily that has no preferential insertion site and often occurs as multiple chromosomal copies. Here, functional genomics and mating experiments were combined to address ICEA functions and define the minimal ICEA chassis conferring conjugative properties to Data further indicated a complex interaction among coresident ICEAs, since the minimal ICEA structure was influenced by the occurrence of additional ICEA copies that can -complement conjugation-deficient ICEAs. However, this cooperative behavior was limited to the CDS14 surface lipoprotein, which is constitutively expressed by coresident ICEAs, and did not extend to other ICEA proteins, including the -acting DDE recombinase and components of the mating channel whose expression was detected only sporadically. Remarkably, conjugation-deficient mutants containing a single ICEA copy knocked out in can be complemented by neighboring cells expressing CDS14. This result, together with those revealing the conservation of CDS14 functions in closely related species, may suggest a way for mycoplasma ICEs to extend their interaction outside their chromosomal environment. Overall, this report provides a first model of conjugative transfer in mycoplasmas and offers valuable insights into understanding horizontal gene transfer in this highly adaptive and diverse group of minimal bacteria. Integrative conjugative elements (ICEs) are self-transmissible mobile genetic elements that are key mediators of horizontal gene flow in bacteria. Recently, a new category of ICEs was identified that confer conjugative properties to mycoplasmas, a highly adaptive and diverse group of wall-less bacteria with reduced genomes. Unlike classical ICEs, these mobile elements have no preferential insertion specificity, and multiple mycoplasma ICE copies can be found randomly integrated into the host chromosome. Here, the prototype ICE of was used to define the minimal conjugative machinery and to propose the first model of ICE transfer in mycoplasmas. This model unveils the complex interactions taking place among coresident ICEs and suggests a way for these elements to extend their influence outside their chromosomal environment. These data pave the way for future studies aiming at deciphering chromosomal transfer, an unconventional mechanism of DNA swapping that has been recently associated with mycoplasma ICEs.
无壁支原体中整合性接合元件 (ICE) 的发现,以及它们在种内和种间大规模基因流动中的作用的证明,为这些最小细菌的进化提供了新的视角。其中,反刍动物病原体的 ICE(ICEA)是一个原型,属于 Mutator-like 超家族的一个新分支,没有优先插入位点,通常以多个染色体拷贝的形式存在。在这里,功能基因组学和交配实验相结合,以解决 ICEA 的功能,并定义赋予接合特性的最小 ICEA 底盘。数据进一步表明,共存的 ICEA 之间存在复杂的相互作用,因为最小的 ICEA 结构受到额外 ICEA 拷贝的影响,这些拷贝可以-补充缺乏接合的 ICEA。然而,这种合作行为仅限于核心共存 ICEA 组成型表达的 CDS14 表面脂蛋白,而不会扩展到其他 ICEA 蛋白,包括-作用的 DDE 重组酶和交配通道的组成部分,这些蛋白的表达仅偶尔检测到。值得注意的是,含有单个 ICEA 拷贝缺失的缺乏接合的突变体可以被表达 CDS14 的相邻细胞补充。这个结果,以及那些揭示密切相关物种中 CDS14 功能保守性的结果,可能为支原体 ICE 提供了一种在其染色体环境之外扩展其相互作用的方式。总的来说,本报告提供了支原体中接合转移的第一个模型,并为理解这个高度适应和多样化的最小细菌群体中的水平基因转移提供了有价值的见解。整合性接合元件(ICEs)是自我可转移的移动遗传元件,是细菌中水平基因流动的关键介导者。最近,发现了一类新的 ICEs,它们赋予支原体接合特性,支原体是一组具有减少基因组的无壁细菌,具有高度适应性和多样性。与经典的 ICEs 不同,这些移动元件没有优先插入特异性,并且可以在宿主染色体上随机发现多个支原体 ICE 拷贝的整合。在这里,使用 的原型 ICE 来定义最小的接合机制,并提出支原体中 ICE 转移的第一个模型。该模型揭示了共存的 ICE 之间发生的复杂相互作用,并提出了这些元件将其影响扩展到其染色体环境之外的一种方式。这些数据为未来的研究铺平了道路,旨在破译染色体转移,这是一种最近与支原体 ICE 相关的非传统的 DNA 交换机制。