Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, USA.
Phys Chem Chem Phys. 2018 Jul 18;20(28):19030-19036. doi: 10.1039/c8cp03842b.
Bond cleavage reactions initiated by long-wavelength light are needed to extend the scope of the caged-uncaged paradigm into complex physiological settings. Axially unsymmetrical silicon phthalocyanines (SiPcs) undergo efficient release of phenol ligands in a reaction contingent on three factors - near-IR light (690 nm), hypoxia, and a thiol reductant. These studies detail efforts to define the mechanistic basis for this unique conditionally-dependent bond cleavage reaction. Spectroscopic studies provide evidence for the formation of a key phthalocyanine radical anion intermediate formed from the triplet state in a reductant-dependent manner. Computational chemistry studies indicate that phenol ligand solvolysis proceeds through a heptacoordinate silicon transition state and that this solvolytic process is favored following SiPc radical anion formation. These results provide insight regarding the central role that radical anion intermediates formed through photoinduced electron transfer with biological reductants can play in long-wavelength uncaging reactions.
需要通过长波长光引发的键断裂反应将笼型-去笼型范例扩展到复杂的生理环境中。轴向不对称硅酞菁(SiPc)在依赖于三个因素的反应中有效地释放出酚配体 - 近红外光(690nm)、缺氧和硫醇还原剂。这些研究详细说明了确定这种独特的条件依赖性键断裂反应的机制基础的努力。光谱研究提供了证据,证明了关键的酞菁自由基阴离子中间体是通过还原剂依赖性方式从三重态形成的。计算化学研究表明,酚配体的溶剂解通过七配位硅过渡态进行,并且在 SiPc 自由基阴离子形成后,这种溶剂解过程是有利的。这些结果提供了有关通过与生物还原剂的光诱导电子转移形成的自由基阴离子中间体在长波长去笼反应中可以发挥的核心作用的见解。