Dongshin Korean Medicine Hospital, 351, Omok-ro, Yangcheon-gu, Seoul, 07999, Republic of Korea.
Chung-Yeon Medical Institute, 64, Sangmujungang-ro, Seo-gu, Gwangju, 61949, Republic of Korea.
BMC Complement Altern Med. 2018 Jul 4;18(1):204. doi: 10.1186/s12906-018-2269-7.
Although alopecia affects the quality of life, its pathogenesis is unknown, because cellular interactions in the hair follicle are complex. Several authors have suggested using herbal medicine to treat alopecia, and bioinformatics and network pharmacology may constitute a new research strategy in this regard because herbal medicines contain various chemical components. This study used association rule mining (ARM) and network analysis to analyze the combinations of medicinal herbs used to treat alopecia.
We searched Chinese, Korean, and English databases for literature about alopecia treatment, extracting the names of each herbal prescription and herb. The meridian tropism and classification category of each herb were also investigated. Using ARM, we identified frequently combined two-herb and three-herb sets. Using network analysis, we divided the herbs into several modules according to prescription pattern.
Fifty-six articles and 489 herbal medicines were included-312 internal and 177 external medicines. Among the 312 medicinal herbs used in internal medicine group, the most frequently combined two-herb set was Polygonum multiflorum Thunb. () and Angelica sinensis (Oliv.) Dlels (). The most frequently used three-herb combination was Polygonum multiflorum Thunb., Angelica sinensis (Oliv.) Dlels, and Ligusticum chuanxiong Hort. (). In network analysis, three modules were identified. The herbs of Module 1 were related to the liver and kidney meridians, and those of Module 3 were related to the Stomach meridian.
We identified the frequency, characteristics, and functional modules of herb combinations frequently used in alopecia treatment. We confirmed the value of classical medicinal herb theory. This finding will prompt further bioinformatics and network pharmacology research on alopecia.
尽管脱发会影响生活质量,但由于毛囊中的细胞相互作用复杂,其发病机制尚不清楚。有几位作者建议使用草药来治疗脱发,而生物信息学和网络药理学可能为此提供新的研究策略,因为草药含有各种化学成分。本研究使用关联规则挖掘(ARM)和网络分析来分析治疗脱发的草药组合。
我们检索了中文、韩文和英文数据库中关于脱发治疗的文献,提取了每个草药处方和草药的名称。还研究了每种草药的经络倾向和分类类别。使用 ARM,我们确定了经常联合使用的两药和三药组合。使用网络分析,根据处方模式将草药分为几个模块。
共纳入 56 篇文献和 489 种草药,包括 312 种内服草药和 177 种外用草药。在内部医学组使用的 312 种草药中,最常联合使用的两药组合是何首乌(Polygonum multiflorum Thunb.)和当归(Angelica sinensis (Oliv.) Dlels)。最常用的三种草药组合是何首乌、当归和川芎(Ligusticum chuanxiong Hort.)。在网络分析中,鉴定出三个模块。模块 1 的草药与肝、肾经络有关,模块 3 的草药与胃经有关。
我们确定了治疗脱发常用草药组合的频率、特征和功能模块。我们证实了经典草药理论的价值。这一发现将促使对脱发进行进一步的生物信息学和网络药理学研究。