Suppr超能文献

额眶部脑岛皮质对静息态默认模式网络和中央执行网络起因果中介作用,从而影响健康老年人的个体认知表现。

The fronto-insular cortex causally mediates the default-mode and central-executive networks to contribute to individual cognitive performance in healthy elderly.

机构信息

Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.

Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Hum Brain Mapp. 2018 Nov;39(11):4302-4311. doi: 10.1002/hbm.24247. Epub 2018 Jul 4.

Abstract

The triple network model that consists of the default-mode network (DMN), central-executive network (CEN), and salience network (SN) has been suggested as a powerful paradigm for investigation of network mechanisms underlying various cognitive functions and brain disorders. A crucial hypothesis in this model is that the fronto-insular cortex (FIC) in the SN plays centrally in mediating interactions between the networks. Using a machine learning approach based on independent component analysis and Bayesian network (BN), this study characterizes the directed connectivity architecture of the triple network and examines the role of FIC in connectivity of the model. Data-driven exploration shows that the FIC initiates influential connections to all other regions to globally control the functional dynamics of the triple network. Moreover, stronger BN connectivity between the FIC and regions of the DMN and the CEN, as well as the increased outflow connections from the FIC are found to predict individual performance in memory and executive tasks. In addition, the posterior cingulate cortex in the DMN was also confirmed as an inflow hub that integrates information converging from other areas. Collectively, the results highlight the central role of FIC in mediating the activity of large-scale networks, which is crucial for individual cognitive function.

摘要

三重网络模型由默认模式网络(DMN)、中央执行网络(CEN)和显着性网络(SN)组成,它被认为是研究各种认知功能和大脑障碍背后的网络机制的有力范例。该模型的一个关键假设是,SN 中的额岛皮层(FIC)在介导网络之间的相互作用中起着核心作用。本研究使用基于独立成分分析和贝叶斯网络(BN)的机器学习方法,描述了三重网络的定向连接结构,并研究了 FIC 在模型连接中的作用。数据驱动的探索表明,FIC 启动对所有其他区域的有影响力的连接,以全局控制三重网络的功能动态。此外,还发现 FIC 与 DMN 和 CEN 区域之间的 BN 连接更强,以及来自 FIC 的传出连接增加,这可以预测个体在记忆和执行任务中的表现。此外,DMN 中的后扣带回也被证实为一个流入枢纽,它整合了来自其他区域的信息。总的来说,这些结果强调了 FIC 在介导大规模网络活动中的核心作用,这对于个体认知功能至关重要。

相似文献

3
Large-Scale Granger Causal Brain Network based on Resting-State fMRI data.
Neuroscience. 2020 Jan 15;425:169-180. doi: 10.1016/j.neuroscience.2019.11.006. Epub 2019 Nov 30.
5
A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74. doi: 10.1073/pnas.0800005105. Epub 2008 Aug 22.
6
Altered connectivity within and between the default mode, central executive, and salience networks in obsessive-compulsive disorder.
J Affect Disord. 2017 Dec 1;223:106-114. doi: 10.1016/j.jad.2017.07.041. Epub 2017 Jul 20.
9
Altered coupling of default-mode, executive-control and salience networks in Internet gaming disorder.
Eur Psychiatry. 2017 Sep;45:114-120. doi: 10.1016/j.eurpsy.2017.06.012. Epub 2017 Jul 12.

引用本文的文献

3
Augmenting Internet-Based Cognitive Behavioral Therapy for Major Depressive Disorder With Transcranial Infrared Laser Stimulation.
Biol Psychiatry Glob Open Sci. 2025 Jan 9;5(2):100449. doi: 10.1016/j.bpsgos.2025.100449. eCollection 2025 Mar.
6
Engineering Virtuous health habits using Emotion and Neurocognition: Flexibility for Lifestyle Optimization and Weight management (EVEN FLOW).
Front Aging Neurosci. 2023 Nov 22;15:1256430. doi: 10.3389/fnagi.2023.1256430. eCollection 2023.
9
Intrinsic network activity reflects the ongoing experience of chronic pain.
Sci Rep. 2021 Nov 8;11(1):21870. doi: 10.1038/s41598-021-01340-0.
10
A Transcriptome Community-and-Module Approach of the Human Mesoconnectome.
Entropy (Basel). 2021 Aug 11;23(8):1031. doi: 10.3390/e23081031.

本文引用的文献

2
Activity flow over resting-state networks shapes cognitive task activations.
Nat Neurosci. 2016 Dec;19(12):1718-1726. doi: 10.1038/nn.4406. Epub 2016 Oct 10.
3
Higher Intelligence Is Associated with Less Task-Related Brain Network Reconfiguration.
J Neurosci. 2016 Aug 17;36(33):8551-61. doi: 10.1523/JNEUROSCI.0358-16.2016.
4
Effects of Cognitive Training on Resting-State Functional Connectivity of Default Mode, Salience, and Central Executive Networks.
Front Aging Neurosci. 2016 Apr 12;8:70. doi: 10.3389/fnagi.2016.00070. eCollection 2016.
5
Task-free MRI predicts individual differences in brain activity during task performance.
Science. 2016 Apr 8;352(6282):216-20. doi: 10.1126/science.aad8127. Epub 2016 Apr 7.
8
Salience processing and insular cortical function and dysfunction.
Nat Rev Neurosci. 2015 Jan;16(1):55-61. doi: 10.1038/nrn3857. Epub 2014 Nov 19.
9
Identifying and Mapping Connectivity Patterns of Brain Network Hubs in Alzheimer's Disease.
Cereb Cortex. 2015 Oct;25(10):3723-42. doi: 10.1093/cercor/bhu246. Epub 2014 Oct 19.
10
Resting-state networks predict individual differences in common and specific aspects of executive function.
Neuroimage. 2015 Jan 1;104:69-78. doi: 10.1016/j.neuroimage.2014.09.045. Epub 2014 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验