Suppr超能文献

建模代谢:总日能量消耗、体重和身高之间的异速关系。

Modelling the metabolism: allometric relationships between total daily energy expenditure, body mass, and height.

机构信息

Department of Mathematical Sciences, United States Military Academy, West Point, NY, 10996, USA.

Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Eur J Clin Nutr. 2019 May;73(5):763-769. doi: 10.1038/s41430-018-0230-y. Epub 2018 Jul 5.

Abstract

BACKGROUND/OBJECTIVES: Accurately predicting energy requirements form a critical component for initializing dynamic mathematical models of metabolism. The majority of such existing estimates rely on linear regression models that predict total daily energy expenditure (TDEE) from age, gender, height, and body mass, however, there is evidence these predictors obey a power function.

SUBJECTS/METHODS: Baseline, free-living TDEE measured by doubly labeled water (DLW) in 20 studies with no overlapping subjects were obtained from the core lab at the University of Chicago and the University of Wisconsin-Madison (N = 2501 adults, 628 males, 1873 females). Linear regression models of log-transformed equations of the form: [Formula: see text] and [Formula: see text] were developed to determine the values of the exponents of body mass (M (kg)) and height (H (cm)) along with a gender effect (Sex). A nonlinear curve fit was performed to develop a power model that also includes age [Formula: see text].

RESULTS

The power for body mass, β = 0.45 and the power for height was β = 1.52 in the database with both genders combined. Adding gender reduced these to β = 0.43 and β = 1.04. All terms were significant (p < 0.01) except for height when including gender. The powers for height in the additive gender-specific models were both closer to 1 and the power for body mass was similar across all models ranging between 0.41 and 0.57.

CONCLUSIONS

A nonlinear scaling relationship was found to hold for body mass and needs to be considered when adjusting TDEE for body mass or predicting human energy requirements as a function of body mass especially in individuals with obesity.

摘要

背景/目的:准确预测能量需求是建立新陈代谢动态数学模型的关键组成部分。大多数现有的估计方法都依赖于线性回归模型,该模型根据年龄、性别、身高和体重预测总能量消耗(TDEE),然而,有证据表明这些预测因子遵循幂函数关系。

受试者/方法:从芝加哥大学和威斯康星大学麦迪逊分校的核心实验室获得了 20 项研究中双标记水(DLW)测量的无重叠受试者的基线、自由生活 TDEE(N=2501 名成年人,628 名男性,1873 名女性)。开发了以对数形式表示的方程的线性回归模型,形式为:[公式:见文本]和[公式:见文本],以确定体重(M(kg))和身高(H(cm))的指数值以及性别效应(Sex)。进行非线性曲线拟合以开发一个包括年龄的幂模型[公式:见文本]。

结果

在包含两性的数据库中,体重的幂为β=0.45,身高的幂为β=1.52。加入性别后,这两个数字分别减少到β=0.43和β=1.04。所有术语均具有统计学意义(p<0.01),除了包括性别时身高。两性特定模型中身高的幂更接近 1,而体重的幂在所有模型中都相似,范围在 0.41 到 0.57 之间。

结论

发现体重存在非线性比例关系,在调整体重 TDEE 或预测人体能量需求作为体重的函数时需要考虑,特别是在肥胖个体中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验