Suppr超能文献

宫内生长受限中胎盘叶酸转运体的下调。

Down-regulation of placental folate transporters in intrauterine growth restriction.

机构信息

Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus Aurora, CO, USA; Division of High-risk Pregnancy, Department of Obstetrics & Gynecology, Mackay Memorial Hospital, Taipei, Taiwan.

Children's Health Research Institute, University of Western Ontario, London, ON, Canada; Department of Pediatrics and Biochemistry, University of Western Ontario, London, ON, Canada.

出版信息

J Nutr Biochem. 2018 Sep;59:136-141. doi: 10.1016/j.jnutbio.2018.06.003. Epub 2018 Jun 11.

Abstract

Folate deficiency in pregnancy is associated with neural tube defects, restricted fetal growth and fetal programming of diseases later in life. Fetal folate availability is dependent on maternal folate levels and placental folate transport capacity, mediated by two key transporters, Folate Receptor-α and Reduced Folate Carrier (RFC). We tested the hypothesis that intrauterine growth restriction (IUGR) is associated with decreased folate transporter expression and activity in isolated syncytiotrophoblast microvillous plasma membranes (MVM). Women with pregnancies complicated by IUGR (birth weight <3rd percentile, mean birth weight 1804±110 g, gestational age 35.7±0.61 weeks, n=25) and women delivering an appropriately-for gestational age infant (control group, birth weight 25th-75th centile, mean birth weight 2493±216 g, gestational age 33.9±0.95 weeks, n=19) were recruited and placentas were collected at delivery. MVM was isolated and folate transporter protein expression was measured using Western blot and transporter activity was determined using radiolabelled methyltetrahydrofolic acid and rapid filtration. Whereas the expression of FR-α was unaffected, MVM RFC protein expression was significantly decreased in the IUGR group (-34%, P<.05). IUGR MVM had a significantly lower folate uptake compared to the control group (-38%, P<.05). In conclusion, placental folate transport capacity is decreased in IUGR, which may contribute to the restricted fetal growth and intrauterine programming of childhood and adult disease. These findings suggest that continuation of folate supplementation in the second and third trimester is of particular importance in pregnancies complicated by IUGR.

摘要

妊娠叶酸缺乏与神经管缺陷、胎儿生长受限和胎儿在以后的生活中发生疾病的编程有关。胎儿叶酸的可用性取决于母体叶酸水平和胎盘叶酸转运能力,这由两个关键转运体介导,叶酸受体-α和还原叶酸载体(RFC)。我们检验了这样一个假设,即宫内生长受限(IUGR)与分离的合体滋养细胞微绒毛质膜(MVM)中叶酸转运体表达和活性降低有关。患有 IUGR(出生体重<第 3 百分位,平均出生体重 1804±110g,孕龄 35.7±0.61 周,n=25)和适当胎龄出生婴儿(对照组,出生体重第 25-75 百分位,平均出生体重 2493±216g,孕龄 33.9±0.95 周,n=19)的孕妇被招募,并在分娩时收集胎盘。分离 MVM 并用 Western blot 测量叶酸转运体蛋白表达,并用放射性标记的甲基四氢叶酸和快速过滤测定转运体活性。虽然 FR-α的表达不受影响,但 IUGR 组的 MVM RFC 蛋白表达显著降低(-34%,P<.05)。与对照组相比,IUGR MVM 的叶酸摄取量显著降低(-38%,P<.05)。总之,IUGR 胎盘的叶酸转运能力降低,这可能导致胎儿生长受限和儿童和成人疾病的宫内编程。这些发现表明,在 IUGR 妊娠中,在第二和第三孕期继续补充叶酸尤为重要。

相似文献

1
Down-regulation of placental folate transporters in intrauterine growth restriction.
J Nutr Biochem. 2018 Sep;59:136-141. doi: 10.1016/j.jnutbio.2018.06.003. Epub 2018 Jun 11.
2
Decreased placental folate transporter expression and activity in first and second trimester in obese mothers.
J Nutr Biochem. 2020 Mar;77:108305. doi: 10.1016/j.jnutbio.2019.108305. Epub 2019 Nov 25.
5
Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR.
Clin Sci (Lond). 2015 Dec;129(12):1131-41. doi: 10.1042/CS20150511. Epub 2015 Sep 15.
7
Fetal serum folate concentrations and placental folate transport in obese women.
Am J Obstet Gynecol. 2011 Jul;205(1):83.e17-25. doi: 10.1016/j.ajog.2011.02.053. Epub 2011 Feb 23.
8
Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters.
Pediatr Res. 1998 Aug;44(2):233-8. doi: 10.1203/00006450-199808000-00016.
10
Effect of high altitude on human placental amino acid transport.
J Appl Physiol (1985). 2020 Jan 1;128(1):127-133. doi: 10.1152/japplphysiol.00691.2019. Epub 2019 Dec 5.

引用本文的文献

1
Diet-induced hyperhomocysteinemia causes sex-dependent deficiencies in offspring musculature and brain function.
Front Cell Dev Biol. 2024 Mar 15;12:1322844. doi: 10.3389/fcell.2024.1322844. eCollection 2024.
3
Therapeutic strategies targeting folate receptor α for ovarian cancer.
Front Immunol. 2023 Aug 30;14:1254532. doi: 10.3389/fimmu.2023.1254532. eCollection 2023.
4
The influence of early environment and micronutrient availability on developmental epigenetic programming: lessons from the placenta.
Front Cell Dev Biol. 2023 Jul 6;11:1212199. doi: 10.3389/fcell.2023.1212199. eCollection 2023.
5
One-carbon metabolism is required for epigenetic stability in the mouse placenta.
Front Cell Dev Biol. 2023 Jun 27;11:1209928. doi: 10.3389/fcell.2023.1209928. eCollection 2023.
6
Associations of solar activity and related exposures with fetal growth.
Sci Total Environ. 2023 Aug 10;885:163862. doi: 10.1016/j.scitotenv.2023.163862. Epub 2023 May 2.
7
Epigenome-wide association study of serum folate in maternal peripheral blood leukocytes.
Epigenomics. 2023 Jan;15(1):39-52. doi: 10.2217/epi-2022-0427. Epub 2023 Mar 28.
9
Placental Function and the Development of Fetal Overgrowth and Fetal Growth Restriction.
Obstet Gynecol Clin North Am. 2021 Jun;48(2):247-266. doi: 10.1016/j.ogc.2021.02.001.
10
Developmental origins of metabolic diseases.
Physiol Rev. 2021 Jul 1;101(3):739-795. doi: 10.1152/physrev.00002.2020. Epub 2020 Dec 3.

本文引用的文献

2
Folic acid supplementation: what is new? Fetal, obstetric, long-term benefits and risks.
Future Sci OA. 2016 Apr 21;2(2):FSO116. doi: 10.4155/fsoa-2015-0015. eCollection 2016 Jun.
3
4
Relationship between folate transporters expression in human placentas at term and birth weights.
Placenta. 2016 Feb;38:24-8. doi: 10.1016/j.placenta.2015.12.007. Epub 2015 Dec 17.
6
Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR.
Clin Sci (Lond). 2015 Dec;129(12):1131-41. doi: 10.1042/CS20150511. Epub 2015 Sep 15.
7
Influence of maternal folate status on human fetal growth parameters.
Mol Nutr Food Res. 2013 Apr;57(4):582-95. doi: 10.1002/mnfr.201200084. Epub 2012 Dec 4.
10
Fetal programming: maternal nutrition and role of one-carbon metabolism.
Rev Endocr Metab Disord. 2012 Jun;13(2):121-7. doi: 10.1007/s11154-012-9214-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验