Suppr超能文献

自适应评论家设计在具有未知动态的非线性系统的事件触发鲁棒控制。

Adaptive Critic Designs for Event-Triggered Robust Control of Nonlinear Systems With Unknown Dynamics.

出版信息

IEEE Trans Cybern. 2019 Jun;49(6):2255-2267. doi: 10.1109/TCYB.2018.2823199. Epub 2018 Apr 17.

Abstract

This paper develops a novel event-triggered robust control strategy for continuous-time nonlinear systems with unknown dynamics. To begin with, the event-triggered robust nonlinear control problem is transformed into an event-triggered nonlinear optimal control problem by introducing an infinite-horizon integral cost for the nominal system. Then, a recurrent neural network (RNN) and adaptive critic designs (ACDs) are employed to solve the derived event-triggered nonlinear optimal control problem. The RNN is applied to reconstruct the system dynamics based on collected system data. After acquiring the knowledge of system dynamics, a unique critic network is proposed to obtain the approximate solution of the event-triggered Hamilton-Jacobi-Bellman equation within the framework of ACDs. The critic network is updated by using simultaneously historical and instantaneous state data. An advantage of the present critic network update law is that it can relax the persistence of excitation condition. Meanwhile, under a newly developed event-triggering condition, the proposed critic network tuning rule not only guarantees the critic network weights to converge to optimums but also ensures nominal system states to be uniformly ultimately bounded. Moreover, by using Lyapunov method, it is proved that the derived optimal event-triggered control (ETC) guarantees uniform ultimate boundedness of all the signals in the original system. Finally, a nonlinear oscillator and an unstable power system are provided to validate the developed robust ETC scheme.

摘要

本文为具有未知动态的连续时间非线性系统开发了一种新颖的事件触发鲁棒控制策略。首先,通过为标称系统引入无限时域积分代价,将事件触发鲁棒非线性控制问题转化为事件触发非线性最优控制问题。然后,采用递归神经网络(RNN)和自适应评论家设计(ACDs)来解决所得到的事件触发非线性最优控制问题。RNN 用于基于收集的系统数据重建系统动态。在获得系统动态的知识后,提出了一个独特的评论家网络,在 ACDs 的框架内获得事件触发 Hamilton-Jacobi-Bellman 方程的近似解。评论家网络通过同时使用历史和瞬时状态数据进行更新。本评论家网络更新律的一个优点是它可以放宽持续激励条件。同时,在所提出的新型事件触发条件下,所提出的评论家网络调整规则不仅保证了评论家网络权重收敛到最优,而且保证了标称系统状态的一致有界性。此外,通过使用 Lyapunov 方法,证明所得到的最优事件触发控制(ETC)保证了原始系统中所有信号的一致有界性。最后,提供了一个非线性振荡器和一个不稳定的电力系统来验证所开发的鲁棒 ETC 方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验