Suppr超能文献

弱噪声诱导的神经振荡抑制与调制转换

Weak-noise-induced transitions with inhibition and modulation of neural oscillations.

作者信息

Yamakou Marius E, Jost Jürgen

机构信息

Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstr. 22, 04103, Leipzig, Germany.

Fakultät für Mathematik und Informatik, Universität Leipzig, Augustusplatz 10, 04109, Leipzig, Germany.

出版信息

Biol Cybern. 2018 Oct;112(5):445-463. doi: 10.1007/s00422-018-0770-1. Epub 2018 Jul 11.

Abstract

We analyze the effect of weak-noise-induced transitions on the dynamics of the FitzHugh-Nagumo neuron model in a bistable state consisting of a stable fixed point and a stable unforced limit cycle. Bifurcation and slow-fast analysis give conditions on the parameter space for the establishment of this bi-stability. In the parametric zone of bi-stability, weak-noise amplitudes may strongly inhibit the neuron's spiking activity. Surprisingly, increasing the noise strength leads to a minimum in the spiking activity, after which the activity starts to increase monotonically with an increase in noise strength. We investigate this inhibition and modulation of neural oscillations by weak-noise amplitudes by looking at the variation of the mean number of spikes per unit time with the noise intensity. We show that this phenomenon always occurs when the initial conditions lie in the basin of attraction of the stable limit cycle. For initial conditions in the basin of attraction of the stable fixed point, the phenomenon, however, disappears, unless the timescale separation parameter of the model is bounded within some interval. We provide a theoretical explanation of this phenomenon in terms of the stochastic sensitivity functions of the attractors and their minimum Mahalanobis distances from the separatrix isolating the basins of attraction.

摘要

我们分析了弱噪声诱导的跃迁对处于双稳态的FitzHugh-Nagumo神经元模型动力学的影响,该双稳态由一个稳定的不动点和一个稳定的无外力极限环组成。分岔和快慢分析给出了建立这种双稳态的参数空间条件。在双稳态的参数区域中,弱噪声幅度可能会强烈抑制神经元的放电活动。令人惊讶的是,增加噪声强度会导致放电活动出现最小值,在此之后,活动开始随着噪声强度的增加而单调增加。我们通过观察单位时间内平均放电次数随噪声强度的变化,研究了弱噪声幅度对神经振荡的这种抑制和调制作用。我们表明,当初始条件位于稳定极限环的吸引域内时,这种现象总是会出现。然而,对于稳定不动点吸引域内的初始条件,除非模型的时间尺度分离参数限制在某个区间内,否则这种现象会消失。我们根据吸引子的随机灵敏度函数及其与隔离吸引域的分界线的最小马氏距离,对这一现象提供了理论解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8cc/6153713/9f8aea06be7e/422_2018_770_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验