Han Xian-Hua, Shi Boxin, Zheng Yinqiang
IEEE Trans Image Process. 2018 Jul 12. doi: 10.1109/TIP.2018.2855418.
Fusing a low-resolution hyperspectral image with the corresponding high-resolution multispectral image to obtain a high-resolution hyperspectral image is an important technique for capturing comprehensive scene information in both spatial and spectral domains. Existing approaches adopt sparsity promoting strategy, and encode the spectral information of each pixel independently, which results in noisy sparse representation. We propose a novel hyperspectral image super-resolution method via a self-similarity constrained sparse representation. We explore the similar patch structures across the whole image and the pixels with close appearance in local regions to create globalstructure groups and local-spectral super-pixels. By forcing the similarity of the sparse representations for pixels belonging to the same group and super-pixel, we alleviate the effect of the outliers in the learned sparse coding. Experiment results on benchmark datasets validate that the proposed method outperforms the stateof- the-art methods in both quantitative metrics and visual effect.
将低分辨率高光谱图像与相应的高分辨率多光谱图像融合以获得高分辨率高光谱图像,是在空间和光谱域中捕获综合场景信息的一项重要技术。现有方法采用稀疏性促进策略,并独立编码每个像素的光谱信息,这导致了有噪声的稀疏表示。我们提出了一种通过自相似性约束稀疏表示的新型高光谱图像超分辨率方法。我们探索整个图像中的相似补丁结构以及局部区域中外观相近的像素,以创建全局结构组和局部光谱超像素。通过强制属于同一组和超像素的像素的稀疏表示具有相似性,我们减轻了学习到的稀疏编码中异常值的影响。在基准数据集上的实验结果验证了所提出的方法在定量指标和视觉效果方面均优于现有方法。