Suppr超能文献

基于磁场强度的行人室内定位 mPILOT

mPILOT-Magnetic Field Strength Based Pedestrian Indoor Localization.

机构信息

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.

出版信息

Sensors (Basel). 2018 Jul 14;18(7):2283. doi: 10.3390/s18072283.

Abstract

An indoor localization system based on off-the-shelf smartphone sensors is presented which employs the magnetometer to find user location. Further assisted by the accelerometer and gyroscope, the proposed system is able to locate the user without any prior knowledge of user initial position. The system exploits the fingerprint database approach for localization. Traditional fingerprinting technology stores data intensity values in database such as RSSI (Received Signal Strength Indicator) values in the case of WiFi fingerprinting and magnetic flux intensity values in the case of geomagnetic fingerprinting. The down side is the need to update the database periodically and device heterogeneity. We solve this problem by using the fingerprint database of patterns formed by magnetic flux intensity values. The pattern matching approach solves the problem of device heterogeneity and the algorithm's performance with Samsung Galaxy S8 and LG G6 is comparable. A deep learning based artificial neural network is adopted to identify the user state of walking and stationary and its accuracy is 95%. The localization is totally infrastructure independent and does not require any other technology to constraint the search space. The experiments are performed to determine the accuracy in three buildings of Yeungnam University, Republic of Korea with different path lengths and path geometry. The results demonstrate that the error is 2⁻3 m for 50 percentile with various buildings. Even though many locations in the same building exhibit very similar magnetic attitude, the algorithm achieves an accuracy of 4 m for 75 percentile irrespective of the device used for localization.

摘要

提出了一种基于现成智能手机传感器的室内定位系统,该系统利用磁力计来确定用户位置。进一步借助加速度计和陀螺仪,所提出的系统能够在不了解用户初始位置的情况下定位用户。该系统利用指纹数据库方法进行定位。传统的指纹识别技术在数据库中存储数据强度值,例如 WiFi 指纹识别中的 RSSI(接收信号强度指示)值和地磁指纹识别中的磁通强度值。缺点是需要定期更新数据库和设备异构性。我们通过使用磁通强度值形成的模式的指纹数据库来解决这个问题。模式匹配方法解决了设备异构性问题,并且算法在三星 Galaxy S8 和 LG G6 上的性能相当。采用基于深度学习的人工神经网络来识别用户的行走和静止状态,其准确率为 95%。定位完全独立于基础设施,不需要任何其他技术来约束搜索空间。在韩国大邱的 Yeungnam 大学的三栋建筑物中进行了实验,以确定不同路径长度和路径几何形状下的精度。结果表明,各种建筑物的 50%百分位误差为 2⁻3 米。即使同一建筑物中的许多位置具有非常相似的磁场姿态,该算法仍能实现 75%百分位的 4 米定位精度,而与用于定位的设备无关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7968/6068652/7b4a48a56c29/sensors-18-02283-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验