Suppr超能文献

微生物群落中多个稳定状态可通过稳定婚姻问题解释。

Multiple stable states in microbial communities explained by the stable marriage problem.

机构信息

Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.

Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

出版信息

ISME J. 2018 Dec;12(12):2823-2834. doi: 10.1038/s41396-018-0222-x. Epub 2018 Jul 19.

Abstract

Experimental studies of microbial communities routinely reveal that they have multiple stable states. While each of these states is generally resilient, certain perturbations such as antibiotics, probiotics, and diet shifts, result in transitions to other states. Can we reliably both predict such stable states as well as direct and control transitions between them? Here we present a new conceptual model-inspired by the stable marriage problem in game theory and economics-in which microbial communities naturally exhibit multiple stable states, each state with a different species' abundance profile. Our model's core ingredient is that microbes utilize nutrients one at a time while competing with each other. Using only two ranked tables, one with microbes' nutrient preferences and one with their competitive abilities, we can determine all possible stable states as well as predict inter-state transitions, triggered by the removal or addition of a specific nutrient or microbe. Further, using an example of seven Bacteroides species common to the human gut utilizing nine polysaccharides, we predict that mutual complementarity in nutrient preferences enables these species to coexist at high abundances.

摘要

实验研究表明,微生物群落通常具有多个稳定状态。虽然这些状态通常具有弹性,但某些扰动,如抗生素、益生菌和饮食变化,会导致它们向其他状态转变。我们能否可靠地预测这些稳定状态,并直接控制它们之间的转变?在这里,我们提出了一个新的概念模型——受博弈论和经济学中稳定婚姻问题的启发——其中微生物群落自然地表现出多个稳定状态,每个状态都有不同的物种丰度分布。我们模型的核心要素是微生物在相互竞争的同时一次只利用一种营养物质。仅使用两个排序表,一个表是微生物的营养偏好,另一个表是它们的竞争能力,我们就可以确定所有可能的稳定状态,并预测由特定营养物质或微生物的去除或添加而引发的状态间转变。此外,我们以常见于人类肠道的 7 种拟杆菌物种利用 9 种多糖为例,预测营养偏好的相互补充使得这些物种能够以高丰度共存。

相似文献

1
Multiple stable states in microbial communities explained by the stable marriage problem.
ISME J. 2018 Dec;12(12):2823-2834. doi: 10.1038/s41396-018-0222-x. Epub 2018 Jul 19.
3
Bacterial colonization factors control specificity and stability of the gut microbiota.
Nature. 2013 Sep 19;501(7467):426-9. doi: 10.1038/nature12447. Epub 2013 Aug 18.
4
Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle.
Microbiome. 2016 Apr 12;4:15. doi: 10.1186/s40168-016-0160-7.
6
Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.
mBio. 2015 Nov 10;6(6):e01282-15. doi: 10.1128/mBio.01282-15.
7
Gut species in health and disease.
Gut Microbes. 2021 Jan-Dec;13(1):1-20. doi: 10.1080/19490976.2020.1848158.
8
Bacteroides thetaiotaomicron.
Trends Microbiol. 2018 Nov;26(11):966-967. doi: 10.1016/j.tim.2018.08.005. Epub 2018 Sep 4.
9
Navigating the Gut Buffet: Control of Polysaccharide Utilization in Bacteroides spp.
Trends Microbiol. 2017 Dec;25(12):1005-1015. doi: 10.1016/j.tim.2017.06.009. Epub 2017 Jul 18.
10
Preferential use of plant glycans for growth by Bacteroides ovatus.
Anaerobe. 2020 Dec;66:102276. doi: 10.1016/j.anaerobe.2020.102276. Epub 2020 Sep 12.

引用本文的文献

1
Impact of grassland saline-alkaline degradation on domestic herbivore rumen microbiota and methane emissions.
Front Vet Sci. 2025 Jul 15;12:1598973. doi: 10.3389/fvets.2025.1598973. eCollection 2025.
2
A theory of ecological invasions and its implications for eco-evolutionary dynamics.
bioRxiv. 2025 Mar 17:2025.03.14.643284. doi: 10.1101/2025.03.14.643284.
6
Statistically learning the functional landscape of microbial communities.
Nat Ecol Evol. 2023 Nov;7(11):1823-1833. doi: 10.1038/s41559-023-02197-4. Epub 2023 Oct 2.
8
Origins of life: first came evolutionary dynamics.
QRB Discov. 2023 Mar 22;4:e4. doi: 10.1017/qrd.2023.2. eCollection 2023.
9
Top-down identification of keystone taxa in the microbiome.
Nat Commun. 2023 Jul 4;14(1):3951. doi: 10.1038/s41467-023-39459-5.

本文引用的文献

1
Growth strategy of microbes on mixed carbon sources.
Nat Commun. 2019 Mar 20;10(1):1279. doi: 10.1038/s41467-019-09261-3.
2
Emergent simplicity in microbial community assembly.
Science. 2018 Aug 3;361(6401):469-474. doi: 10.1126/science.aat1168.
3
Deciphering microbial interactions in synthetic human gut microbiome communities.
Mol Syst Biol. 2018 Jun 21;14(6):e8157. doi: 10.15252/msb.20178157.
4
Diversity, Stability, and Reproducibility in Stochastically Assembled Microbial Ecosystems.
Phys Rev Lett. 2018 Apr 13;120(15):158102. doi: 10.1103/PhysRevLett.120.158102.
9
Community structure follows simple assembly rules in microbial microcosms.
Nat Ecol Evol. 2017 Mar 27;1(5):109. doi: 10.1038/s41559-017-0109.
10
Higher-order interactions stabilize dynamics in competitive network models.
Nature. 2017 Aug 10;548(7666):210-213. doi: 10.1038/nature23273. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验