Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
Soft Matter. 2018 Aug 1;14(30):6327-6341. doi: 10.1039/c8sm00686e.
Glycosaminoglycans (GAGs) are of interest for biomedical applications because of their ability to retain proteins (e.g. growth factors) involved in cell-to-cell signaling processes. In this study, the potential of GAG-based microgels for protein delivery and their protein release kinetics upon encapsulation in hydrogel scaffolds were investigated. Monodisperse hyaluronic acid methacrylate (HAMA) and chondroitin sulfate methacrylate (CSMA) micro-hydrogel spheres (diameters 500-700 μm), were used to study the absorption of a cationic model protein (lysozyme), microgel (de)swelling, intra-gel lysozyme distribution and its diffusion coefficient in the microgels dispersed in buffers (pH 7.4) of varying ionic strengths. Upon incubation in 20 mM buffer, lysozyme was absorbed up to 3 and 4 mg mg-1 dry microspheres for HAMA and CSMA microgels respectively, with loading efficiencies up to 100%. Binding stoichiometries of disaccharide : lysozyme (10.2 : 1 and 7.5 : 1 for HAMA and CSMA, respectively) were similar to those for GAG-lysozyme complex coacervates based on soluble GAGs found in literature. Complex coacervates inside GAG microgels were also formed in buffers of higher ionic strengths as opposed to GAG-lysozyme systems based on soluble GAGs, likely due to increased local anionic charge density in the GAG networks. Binding of cationic lysozyme to the negatively charged microgel networks resulted in deswelling up to a factor 2 in diameter. Lysozyme release from the microgels was dependent on the ionic strength of the buffer and on the number of anionic groups per disaccharide, (1 for HAMA versus 2 for CSMA). Lysozyme diffusion coefficients of 0.027 in HAMA and <0.006 μm2 s-1 in CSMA microgels were found in 170 mM buffer (duration of release 14 and 28 days respectively). Fluorescence Recovery After Photobleaching (FRAP) measurements yielded similar trends, although lysozyme diffusion was likely altered due to the negative charges introduced to the protein through the FITC-labeling resulting in weaker protein-matrix interactions. Finally, lysozyme-loaded CSMA microgels were embedded into a thermosensitive hydrogel scaffold. These composite systems showed complete lysozyme release in ∼58 days as opposed to only 3 days for GAG-free scaffolds. In conclusion, covalently crosslinked methacrylated GAG hydrogels have potential as controlled release depots for cationic proteins in tissue engineering applications.
糖胺聚糖(GAGs)因其能够保留参与细胞间信号传递过程的蛋白质(例如生长因子)而引起生物医学应用的关注。在这项研究中,研究了基于 GAG 的微凝胶在蛋白质递送上的潜力,以及它们在水凝胶支架中包封时的蛋白质释放动力学。单分散透明质酸甲基丙烯酰胺(HAMA)和硫酸软骨素甲基丙烯酰胺(CSMA)微凝胶球(直径 500-700μm)用于研究阳离子模型蛋白(溶菌酶)的吸收、微凝胶的(溶胀)收缩、凝胶内溶菌酶的分布及其在不同离子强度缓冲液(pH7.4)中在微凝胶中的扩散系数。在 20mM 缓冲液中孵育时,HAMA 和 CSMA 微凝胶分别吸收了 3 和 4mgmg-1干微球的溶菌酶,载药量高达 100%。二糖与溶菌酶的结合计量比(10.2:1 和 7.5:1,分别用于 HAMA 和 CSMA)与文献中基于可溶性 GAG 的 GAG-溶菌酶复合凝聚物的结合计量比相似。在较高离子强度的缓冲液中也形成了 GAG 微凝胶内的复合凝聚物,而不是基于可溶性 GAG 的 GAG-溶菌酶系统,这可能是由于 GAG 网络中的局部阴离子电荷密度增加所致。带正电荷的溶菌酶与带负电荷的微凝胶网络的结合导致直径缩小至 2 倍。溶菌酶从微凝胶中的释放取决于缓冲液的离子强度和每个二糖的阴离子基团数(HAMA 为 1,CSMA 为 2)。在 170mM 缓冲液中发现 HAMA 中的溶菌酶扩散系数为 0.027,CSMA 微凝胶中的扩散系数<0.006μm2s-1(释放持续时间分别为 14 和 28 天)。荧光恢复后光漂白(FRAP)测量得出了相似的趋势,尽管由于通过 FITC 标记引入蛋白质的负电荷,蛋白质-基质相互作用可能会减弱,因此溶菌酶的扩散可能会发生变化。最后,将负载溶菌酶的 CSMA 微凝胶嵌入到热敏水凝胶支架中。与无 GAG 支架仅 3 天相比,这些复合系统在约 58 天内完全释放了溶菌酶。总之,共价交联的甲基丙烯酰化 GAG 水凝胶有可能成为组织工程应用中阳离子蛋白的控释库。