IEEE Trans Cybern. 2018 Dec;48(12):3381-3389. doi: 10.1109/TCYB.2018.2852772. Epub 2018 Jul 17.
The information exchange gap between current operation control and dynamic scheduling in high-speed railway systems (HRSs) still exists, and this gap has hindered the further integrative improvement of HRSs. This paper aims to explore a feasible solution to bridging the information exchange gap for further improving the efficiency of HRSs, with the parallel intelligent systems for integrated HRS operation control and dynamic scheduling first analyzed and constructed using the ACP approach, that is, "artificial systems" (A), "computational experiments," (C) and "parallel execution" (P). Then, on the basis of the constructed parallel intelligent systems, experiments on several typical scenarios in HRSs are conducted to achieve a set of control and management strategies for actual HRSs. Experimental results show that a number of powerful tools provided by the proposed parallel intelligent systems can be utilized not only to study the current HRSs, but also to further undertake research on integrated operation control and dynamic scheduling for HRSs.
高速铁路系统(HRS)中当前运行控制和动态调度之间存在信息交换的差距,这一差距阻碍了 HRS 的进一步综合改进。本文旨在探讨一种可行的解决方案,以弥合信息交换差距,进一步提高 HRS 的效率,首先使用 ACP 方法分析和构建用于综合 HRS 运行控制和动态调度的并行智能系统,即“人工系统”(A)、“计算实验”(C)和“并行执行”(P)。然后,在构建的并行智能系统的基础上,对 HRS 中的几个典型场景进行实验,以为实际的 HRS 实现一组控制和管理策略。实验结果表明,所提出的并行智能系统提供的一些强大工具不仅可用于研究当前的 HRS,还可进一步用于综合 HRS 运行控制和动态调度的研究。