a Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD) , Danish Cancer Society Research Center , Copenhagen , Denmark.
b Department of Biology , University of Rome Tor Vergata , Rome , Italy.
Autophagy. 2018;14(7):1285-1287. doi: 10.1080/15548627.2018.1475818. Epub 2018 Jul 20.
Mitochondrial dynamics is required to adapt the manifold functions of mitochondria to cell needs and regulate their turnover by mitophagy. Actually, only if fragmented, mitochondria are engulfed by phagophores, the precursors to autophagosomes, and subsequently degraded. This process is essential to maintain a correct and healthy number of mitochondria that, otherwise, might be harmful. They, indeed, represent the main source of reactive oxygen species that - according to the mitochondrial free radical theory of aging - can cause aging when chronically overproduced. In a recent study, we demonstrated that S-nitrosylation, the reversible modification of cysteine residues by nitric oxide (NO), hyperactivates mitochondrial fragmentation by targeting DNM1L/Drp1 (dynamin 1-like) at Cys644, but inhibits mitophagy, the concomitant occurrence of these conditions driving cell senescence. We demonstrated that cell senescence, as well as mouse and human aging are characterized by an epigenetically-driven decrease in ADH5/GSNOR (alcohol dehydrogenase 5 [class III], chi polypeptide), suggesting that ADH5 may act as new longevity gene.
线粒体动力学对于适应线粒体的多种功能以满足细胞的需求以及通过线粒体自噬来调节其周转率是必需的。实际上,只有在碎片化的情况下,线粒体才会被吞噬体(自噬体的前体)吞噬,并随后被降解。这个过程对于维持正确和健康的线粒体数量是至关重要的,否则线粒体可能会造成伤害。它们确实是活性氧(ROS)的主要来源,根据衰老的线粒体自由基理论,ROS 会在长期过度产生时导致衰老。在最近的一项研究中,我们证明了 S-亚硝基化,即一氧化氮(NO)对半胱氨酸残基的可逆修饰,通过靶向 Cys644 上的 DNM1L/Drp1(dynamin 1-like)来超激活线粒体碎片化,但抑制了线粒体自噬,这些情况的同时发生会导致细胞衰老。我们证明了细胞衰老,以及老鼠和人类的衰老,其特征是 ADH5/GSNOR(醇脱氢酶 5 [III 类],chi 多肽)的表观遗传驱动下降,这表明 ADH5 可能作为新的长寿基因发挥作用。