Levy Nicolas, Naldi Aurélien, Hernandez Céline, Stoll Gautier, Thieffry Denis, Zinovyev Andrei, Calzone Laurence, Paulevé Loïc
LRI UMR 8623, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Orsay, France.
École Normale Supérieure de Lyon, Lyon, France.
Front Physiol. 2018 Jul 6;9:787. doi: 10.3389/fphys.2018.00787. eCollection 2018.
Boolean and multi-valued logical formalisms are increasingly used to model complex cellular networks. To ease the development and analysis of logical models, a series of software tools have been proposed, often with specific assets. However, combining these tools typically implies a series of cumbersome software installation and model conversion steps. In this respect, the provides a joint distribution of several logical modeling software tools, along with an interactive web Python interface easing the chaining of complementary analyses. Our computational workflow combines (1) the importation of a GINsim model and its display, (2) its format conversion using the Java library BioLQM, (3) the formal prediction of mutations using the OCaml software Pint, (4) the model checking using the C++ software NuSMV, (5) quantitative stochastic simulations using the C++ software MaBoSS, and (6) the visualization of results using the Python library matplotlib. To illustrate our approach, we use a recent Boolean model of the signaling network controlling tumor cell invasion and migration. Our model analysis culminates with the prediction of sets of mutations presumably involved in a metastatic phenotype.
布尔逻辑和多值逻辑形式体系越来越多地用于对复杂的细胞网络进行建模。为便于逻辑模型的开发与分析,人们提出了一系列软件工具,这些工具往往具有特定的优势。然而,将这些工具结合起来通常意味着一系列繁琐的软件安装和模型转换步骤。在这方面,[具体内容缺失]提供了多个逻辑建模软件工具的联合发行版,以及一个交互式的基于Python的网络接口,便于进行互补分析的衔接。我们的计算工作流程包括:(1) 导入GINsim模型并进行显示;(2) 使用Java库BioLQM进行格式转换;(3) 使用OCaml软件Pint进行突变的形式预测;(4) 使用C++软件NuSMV进行模型检查;(5) 使用C++软件MaBoSS进行定量随机模拟;(6) 使用Python库matplotlib进行结果可视化。为说明我们的方法,我们使用了一个最近的控制肿瘤细胞侵袭和迁移的信号网络布尔模型。我们的模型分析最终预测了可能与转移表型有关的突变集。