Suppr超能文献

为确保质量进行投入后人体测量数据的评估:肯尼亚人口与健康调查案例研究,2008年至2009年及2014年

Assessment of Anthropometric Data Following Investments to Ensure Quality: Kenya Demographic Health Surveys Case Study, 2008 to 2009 and 2014.

作者信息

Leidman Eva, Mwirigi Louise Masese, Maina-Gathigi Lucy, Wamae Anna, Imbwaga Andrew Amina, Bilukha Oleg O

机构信息

1 Emergency Response and Recovery Branch, Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.

2 UNICEF, New York, NY, USA.

出版信息

Food Nutr Bull. 2018 Sep;39(3):406-419. doi: 10.1177/0379572118783181. Epub 2018 Jul 23.

Abstract

BACKGROUND

Evidence-based nutrition programs depend on accurate estimates of malnutrition derived from data collected in population representative surveys. The feasibility of obtaining accurate anthropometric data as part of national, multisectoral surveys has been a debated issue.

OBJECTIVES

The study aimed to evaluate changes in anthropometric data quality corresponding to investments by the Kenya Ministry of Health and nutrition sector partners for the 2014 Kenya Demographic Health Survey.

METHODS

Anthropometric data collected during the 2008 to 2009 and 2014 Kenya surveys were reanalyzed to assess standard parameters of quality: standard deviation, skewness, and kurtosis of z-score values for 3 anthropometric indicators (weight for height, height for age, and weight for age), percentage of children with missing measurements and outlier values, digit preference, and heaping of age.

RESULTS

A total of 9936 households were selected in 2008 to 2009, and 39 679 households were selected in 2014. Standard deviation of z-scores for all 3 indicators was smaller in 2014 than in 2008 to 2009. Applying original Demographic and Health Survey exclusion criteria, weight for height z-scores were 1.16 in 2014, 10.1% narrower than 2008 to 2009. The percentage of outlying values declined significantly from 2008 to 2009 to 2014 for both height for age and weight for height ( P < .001). Digit preference scores in 2014 improved for both weight ( P = .011) and height ( P < .001) suggesting less rounding of terminal digits.

CONCLUSIONS

All tests of data quality suggest an improvement in 2014 relative to 2008 to 2009, despite the complexity implied by the larger sample. This improvement corresponds with efforts to enhance training and supervision of anthropometry, suggesting a positive effect of these enhancements.

摘要

背景

基于证据的营养项目依赖于从具有人口代表性的调查所收集的数据中对营养不良情况进行准确估计。作为国家多部门调查的一部分,获取准确人体测量数据的可行性一直是一个有争议的问题。

目的

本研究旨在评估与肯尼亚卫生部和营养部门合作伙伴为2014年肯尼亚人口与健康调查所做投资相对应的人体测量数据质量变化。

方法

对2008 - 2009年和2014年肯尼亚调查期间收集的人体测量数据进行重新分析,以评估质量的标准参数:3项人体测量指标(身高别体重、年龄别身高、年龄别体重)的z分数值的标准差、偏度和峰度,测量缺失和异常值儿童的百分比、数字偏好以及年龄的堆积情况。

结果

2008 - 2009年共选取了9936户家庭,2014年选取了39679户家庭。2014年所有3项指标的z分数标准差均小于2008 - 2009年。应用原始的人口与健康调查排除标准,2014年身高别体重z分数为1.16,比2008 - 2009年窄10.1%。年龄别身高和身高别体重的异常值百分比从2008 - 2009年到2014年显著下降(P < 0.001)。2014年体重(P = 0.011)和身高(P < 0.001)的数字偏好分数均有所改善,表明末位数字的舍入情况减少。

结论

尽管样本量增大带来了复杂性,但所有数据质量测试均表明2014年相对于2008 - 2009年有所改善。这种改善与加强人体测量培训和监督的努力相对应,并表明这些改进产生了积极影响。

相似文献

引用本文的文献

本文引用的文献

3
Maternal and child nutrition: building momentum for impact.母婴营养:为产生影响蓄势。
Lancet. 2013 Aug 3;382(9890):372-375. doi: 10.1016/S0140-6736(13)60988-5. Epub 2013 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验