Suppr超能文献

具有二元脉冲序列的胜者全得模型设计

Design of a K-Winners-Take-All Model With a Binary Spike Train.

作者信息

Tymoshchuk Pavlo V, Wunsch Donald C

出版信息

IEEE Trans Cybern. 2019 Aug;49(8):3131-3140. doi: 10.1109/TCYB.2018.2839691. Epub 2018 Jul 23.

Abstract

A continuous-time K -winners-take-all (KWTA) neural model that can identify the largest K of N inputs, where command signal is described. The model is given by a differential equation where the spike train is a sum of delta functions. A functional block-diagram of the model includes N feed-forward hard-limiting neurons and one feedback neuron, used to handle input dynamics. The existence and uniqueness of the model steady states are analyzed, the convergence analysis of the state variable trajectories to the KWTA operation is proven, the convergence time and number of spikes required are derived, as well as the processing of time-varying inputs and perturbations of the model nonlinearities are analyzed. The main advantage of the model is that it is not subject to the intrinsic convergence of speed limitations of comparable designs. The model also has an arbitrary finite resolution determined by a given parameter, low complexity, and initial condition independence. Applications of the model for parallel sorting and parallel rank-order filtering are presented. Theoretical results are derived and illustrated with computer-simulated examples that demonstrate the model's performance.

摘要

一种连续时间的K胜者全得(KWTA)神经模型,该模型能够识别N个输入中的最大K个输入,并对命令信号进行了描述。该模型由一个微分方程给出,其中脉冲序列是狄拉克δ函数的和。该模型的功能框图包括N个前馈硬限幅神经元和一个反馈神经元,用于处理输入动态。分析了模型稳态的存在性和唯一性,证明了状态变量轨迹向KWTA操作的收敛性,推导了收敛时间和所需的脉冲数,同时分析了时变输入的处理以及模型非线性的扰动。该模型的主要优点是不受可比设计中固有收敛速度限制的影响。该模型还具有由给定参数确定的任意有限分辨率、低复杂度和初始条件独立性。介绍了该模型在并行排序和并行秩次滤波中的应用。推导了理论结果并用计算机模拟示例进行了说明,这些示例展示了该模型的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验