Ortu Antonio, Tiranov Alexey, Welinski Sacha, Fröwis Florian, Gisin Nicolas, Ferrier Alban, Goldner Philippe, Afzelius Mikael
Groupe de Physique Appliquée, Université de Genève, Genève, Switzerland.
Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France.
Nat Mater. 2018 Aug;17(8):671-675. doi: 10.1038/s41563-018-0138-x. Epub 2018 Jul 23.
Solid-state electronic spins are extensively studied in quantum information science, as their large magnetic moments offer fast operations for computing and communication, and high sensitivity for sensing. However, electronic spins are more sensitive to magnetic noise, but engineering of their spectroscopic properties, for example, using clock transitions and isotopic engineering, can yield remarkable spin coherence times, as for electronic spins in GaAs, donors in silicon and vacancy centres in diamond. Here we demonstrate simultaneously induced clock transitions for both microwave and optical domains in an isotopically purified Yb:YSiO crystal, reaching coherence times of greater than 100 μs and 1 ms in the optical and microwave domains, respectively. This effect is due to the highly anisotropic hyperfine interaction, which makes each electronic-nuclear state an entangled Bell state. Our results underline the potential of Yb:YSiO for quantum processing applications relying on both optical and spin manipulation, such as optical quantum memories, microwave-to-optical quantum transducers, and single-spin detection, while they should also be observable in a range of different materials with anisotropic hyperfine interactions.
固态电子自旋在量子信息科学中得到了广泛研究,因为它们的大磁矩为计算和通信提供了快速操作,并且对传感具有高灵敏度。然而,电子自旋对磁噪声更敏感,但是通过工程手段调控其光谱特性,例如利用时钟跃迁和同位素工程,可以产生显著的自旋相干时间,如砷化镓中的电子自旋、硅中的施主以及金刚石中的空位中心。在此,我们在同位素纯化的Yb:YSiO晶体中同时展示了微波和光域的诱导时钟跃迁,在光域和微波域分别达到了大于100 μs和1 ms的相干时间。这种效应归因于高度各向异性的超精细相互作用,它使每个电子 - 核态成为一个纠缠的贝尔态。我们的结果强调了Yb:YSiO在依赖光学和自旋操纵的量子处理应用中的潜力,如光学量子存储器、微波到光学量子换能器以及单自旋检测,同时它们在一系列具有各向异性超精细相互作用的不同材料中也应该是可观测的。