Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA; Tianjin Key Laboratory of Information Sensing & Intelligent Control, Tianjin University of Technology and Education, Tianjin, China.
School of Digital Media, Jiangnan University, Wuxi, Jiangsu, China.
Artif Intell Med. 2018 Aug;90:34-41. doi: 10.1016/j.artmed.2018.07.001. Epub 2018 Jul 24.
Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring.
METHODS/MATERIALS: Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord.
The average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value.
With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy.
手动勾画仍然是放射治疗计划中最费力的任务,也是实施常规磁共振成像(MRI)引导自适应放射治疗(MR-ART)的主要障碍。为了解决这个问题,我们提出了一种新的基于人工智能的自动勾画方法,该方法模仿了人类大脑对手动勾画的认知,用于腹部 MR-ART。
方法/材料:我们的算法基于两种信息流,即自上而下和自下而上。自上而下的信息来自模拟 MR 图像。它通过将初始计划轮廓转移到日常图像上来根据其高级信息类别粗略勾勒出目标。自下而上的信息来自像素数据,通过基于监督、自适应、主动学习的支持向量机。它使用低水平像素特征,如强度和位置,将每个目标边界与背景区分开来。最终结果是通过人工智能融合在统一框架中融合自上而下和自下而上的输出得到的。为了评估,我们使用了一组来自四名局部晚期胰腺癌患者的数据集,这些患者使用临床系统(MRIdian,Viewray,俄亥俄州奥克伍德村)接受了 MR-ART 治疗。每组都包括与随机选择的治疗疗程相对应的模拟 MRI 和机载 T1 MRI。每个 MRI 有 144 个 266×266 像素的轴向切片。使用 Dice 相似性指数(DSI)和 Hausdorff 距离指数(HDI),我们比较了肝脏、左肾和右肾以及脊髓的手动和自动轮廓。
每组自动分割时间平均为两分钟。从视觉上看,自动和手动轮廓相似。融合结果的准确性优于单独使用自下而上或自上而下的方法。DSI 值高于 0.86。椎管轮廓的 HDI 值较低。
我们的新算法具有明显高于通常报道的 0.7 的 DSI 值,可实现高精度的分割。据我们所知,这是第一个使用 T1 MRI 图像进行自适应放疗的全自动轮廓勾画方法。