Suppr超能文献

YAP:TEAD 界面突变时结合固有无序蛋白 YAP 的适应性。

Adaptation of the bound intrinsically disordered protein YAP to mutations at the YAP:TEAD interface.

机构信息

Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland.

Chemical Biology & Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland.

出版信息

Protein Sci. 2018 Oct;27(10):1810-1820. doi: 10.1002/pro.3493.

Abstract

Many interactions between proteins are mediated by intrinsically disordered regions (IDRs). Intrinsically disordered proteins (IDPs) do not adopt a stable three-dimensional structure in their unbound form, but they become more structured upon binding to their partners. In this communication, we study how a bound IDR adapts to mutations, preventing the formation of hydrogen bonds at the binding interface that needs a precise positioning of the interacting residues to be formed. We use as a model the YAP:TEAD interface, where one YAP (IDP) and two TEAD residues form hydrogen bonds via their side chain. Our study shows that the conformational flexibility of bound YAP and the reorganization of water molecules at the interface help to reduce the energetic constraints created by the loss of H-bonds at the interface. The residual flexibility/dynamic of bound IDRs and water might, therefore, be a key for the adaptation of IDPs to different interface landscapes and to mutations occurring at binding interfaces.

摘要

许多蛋白质之间的相互作用是由固有无序区域(IDR)介导的。固有无序蛋白(IDP)在未结合状态下不会形成稳定的三维结构,但在与伴侣结合时会变得更加结构化。在本通讯中,我们研究了结合的 IDR 如何适应突变,防止在结合界面形成氢键,因为氢键的形成需要相互作用残基的精确定位。我们使用 YAP:TEAD 界面作为模型,其中一个 YAP(IDP)和两个 TEAD 残基通过侧链形成氢键。我们的研究表明,结合的 YAP 的构象灵活性和界面处水分子的重排有助于减少界面处氢键丧失所产生的能量约束。因此,结合的 IDR 的剩余灵活性/动态性和水可能是 IDP 适应不同界面景观和结合界面发生突变的关键。

相似文献

2
Molecular and structural characterization of a TEAD mutation at the origin of Sveinsson's chorioretinal atrophy.
FEBS J. 2019 Jun;286(12):2381-2398. doi: 10.1111/febs.14817. Epub 2019 Apr 11.
3
Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding.
Protein Sci. 2019 Nov;28(11):1952-1965. doi: 10.1002/pro.3718. Epub 2019 Sep 4.
4
Effect of Disease Causing Missense Mutations on Intrinsically Disordered Regions in Proteins.
Protein Pept Lett. 2022;29(3):254-267. doi: 10.2174/0929866528666211126161200.
5
Structure and Dynamics of an Intrinsically Disordered Protein Region That Partially Folds upon Binding by Chemical-Exchange NMR.
J Am Chem Soc. 2017 Sep 6;139(35):12219-12227. doi: 10.1021/jacs.7b05823. Epub 2017 Aug 28.
7
Probing coupled conformational transitions of intrinsically disordered proteins in their interactions with target proteins.
Anal Biochem. 2021 Apr 15;619:114126. doi: 10.1016/j.ab.2021.114126. Epub 2021 Feb 7.
8
Do sequence neighbours of intrinsically disordered regions promote structural flexibility in intrinsically disordered proteins?
J Struct Biol. 2020 Feb 1;209(2):107428. doi: 10.1016/j.jsb.2019.107428. Epub 2019 Nov 20.
10
A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
J Biomol NMR. 2016 Dec;66(4):243-257. doi: 10.1007/s10858-016-0073-6. Epub 2016 Nov 14.

引用本文的文献

1
YAP1 and QSER1 are Key Modulators of Embryonic Signaling Pathways in the Mammalian Epiblast.
bioRxiv. 2025 Jun 17:2025.06.16.659935. doi: 10.1101/2025.06.16.659935.
5
, a new member of the / transcriptional co-regulator family.
Bioinform Adv. 2022 Feb 3;2(1):vbac008. doi: 10.1093/bioadv/vbac008. eCollection 2022.
7
Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers.
Exp Dermatol. 2022 Oct;31(10):1477-1499. doi: 10.1111/exd.14655. Epub 2022 Aug 12.
8
9
Assays Used for Discovering Small Molecule Inhibitors of YAP Activity in Cancers.
Cancers (Basel). 2022 Feb 17;14(4):1029. doi: 10.3390/cancers14041029.
10
Matrin3: Disorder and ALS Pathogenesis.
Front Mol Biosci. 2022 Jan 10;8:794646. doi: 10.3389/fmolb.2021.794646. eCollection 2021.

本文引用的文献

1
Extreme disorder in an ultrahigh-affinity protein complex.
Nature. 2018 Mar 1;555(7694):61-66. doi: 10.1038/nature25762. Epub 2018 Feb 21.
2
Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy.
J Am Chem Soc. 2018 Jan 24;140(3):1148-1158. doi: 10.1021/jacs.7b12407. Epub 2018 Jan 11.
3
Effect of the acylation of TEAD4 on its interaction with co-activators YAP and TAZ.
Protein Sci. 2017 Dec;26(12):2399-2409. doi: 10.1002/pro.3312. Epub 2017 Nov 11.
4
Induced Fit Is a Special Case of Conformational Selection.
Biochemistry. 2017 Jun 6;56(22):2853-2859. doi: 10.1021/acs.biochem.7b00340. Epub 2017 May 22.
6
Insights into Coupled Folding and Binding Mechanisms from Kinetic Studies.
J Biol Chem. 2016 Mar 25;291(13):6689-95. doi: 10.1074/jbc.R115.692715. Epub 2016 Feb 5.
7
Functional advantages of dynamic protein disorder.
FEBS Lett. 2015 Sep 14;589(19 Pt A):2433-40. doi: 10.1016/j.febslet.2015.06.003. Epub 2015 Jun 11.
8
Applying thermodynamic profiling in lead finding and optimization.
Nat Rev Drug Discov. 2015 Feb;14(2):95-110. doi: 10.1038/nrd4486. Epub 2015 Jan 23.
9
Interplay between partner and ligand facilitates the folding and binding of an intrinsically disordered protein.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15420-5. doi: 10.1073/pnas.1409122111. Epub 2014 Oct 13.
10
Structure-Based Design and Synthesis of Potent Cyclic Peptides Inhibiting the YAP-TEAD Protein-Protein Interaction.
ACS Med Chem Lett. 2014 Jul 14;5(9):993-8. doi: 10.1021/ml500160m. eCollection 2014 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验