Suppr超能文献

基于地标更新 retrosplenial 皮质的头部方向系统:一种计算模型。

Landmark-Based Updating of the Head Direction System by Retrosplenial Cortex: A Computational Model.

作者信息

Page Hector J I, Jeffery Kate J

机构信息

Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, United Kingdom.

出版信息

Front Cell Neurosci. 2018 Jul 13;12:191. doi: 10.3389/fncel.2018.00191. eCollection 2018.

Abstract

Maintaining a sense of direction is fundamental to navigation, and is achieved in the brain by a network of head direction (HD) cells, which update their signal using stable environmental landmarks. How landmarks are detected and their stability determined is still unknown. Recently we reported a new class of cells (Jacob et al., 2017), the bidirectional cells, in a brain region called retrosplenial cortex (RSC) which relays environmental sensory information to the HD system. A subset of these cells, between-compartment (BC) cells, are directionally tuned (like ordinary HD cells) but follow environmental cues in preference to the global HD signal, resulting in opposing (i.e., bidirectional) tuning curves in opposed environments. Another subset, within-compartment (WC) cells, unexpectedly expressed bidirectional tuning curves in each one of the opposed compartments. Both BC and WC cells lost directional tuning in an open field, unlike HD cells. Two questions arise from this discovery: (i) how do these cells acquire their unusual response properties, and (ii) what are they for? We propose that bidirectional cells reflect a two-way interaction between local direction, as indicated by the visual environment, and global direction as signaled by the HD system. We suggest that BC cells receive strong inputs from visual cues, while WC cells additionally receive modifiable inputs from HD cells which, due to Hebbian coactivation of visual inputs plus two opposing sets of HD inputs, acquire the ability to fire in both directions. A neural network model instantiating this hypothesis is presented, which indeed forms both BC and WC bidirectional cells with properties similar to those seen experimentally. We then demonstrate how tuning specificity degrades when WC/BC cells are exposed to multiple directionalities, replicating the observed loss of WC and BC directional tuning in the open field. We suggest that the function of these neurons is to assess the stability of environmental landmarks, thereby determining their utility as reference points by which to set the HD sense of direction. This role could extend to the ability of the HD system to prefer distal over proximal landmarks, and to correct for parallax errors.

摘要

保持方向感是导航的基础,在大脑中是通过头方向(HD)细胞网络实现的,这些细胞利用稳定的环境地标更新其信号。地标是如何被检测到的以及它们的稳定性是如何确定的仍然未知。最近我们报道了一类新的细胞(雅各布等人,2017年),双向细胞,位于一个叫做 retrosplenial 皮质(RSC)的脑区,该脑区将环境感觉信息传递给HD系统。这些细胞的一个子集,隔间间(BC)细胞,是方向调谐的(像普通的HD细胞),但优先跟随环境线索而不是全局HD信号,导致在相反环境中出现相反的(即双向的)调谐曲线。另一个子集,隔间内(WC)细胞,出乎意料地在每个相反的隔间中都表现出双向调谐曲线。与HD细胞不同,BC和WC细胞在开阔场地中都失去了方向调谐。这个发现引发了两个问题:(i)这些细胞是如何获得它们不寻常的反应特性的,以及(ii)它们的作用是什么?我们提出双向细胞反映了视觉环境所指示的局部方向与HD系统所发出信号的全局方向之间的双向相互作用。我们认为BC细胞从视觉线索接收强烈输入,而WC细胞另外从HD细胞接收可修改的输入,由于视觉输入与两组相反的HD输入的赫布共激活,WC细胞获得了双向放电的能力。提出了一个实例化这一假设的神经网络模型,该模型确实形成了具有与实验中观察到的特性相似的BC和WC双向细胞。然后我们展示了当WC/BC细胞暴露于多个方向时调谐特异性是如何降低的,这复制了在开阔场地中观察到的WC和BC方向调谐的丧失。我们认为这些神经元的功能是评估环境地标的稳定性,从而确定它们作为设定HD方向感的参考点的效用。这个作用可能扩展到HD系统优先选择远处地标而非近处地标以及校正视差误差的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7817/6055052/921542db8c1b/fncel-12-00191-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验