Suppr超能文献

近红外光谱结合模式识别快速鉴别及定量检测掺伪胡杨棘刺粉末

Potential of near infrared spectroscopy and pattern recognition for rapid discrimination and quantification of Gleditsia sinensis thorn powder with adulterants.

机构信息

Shenzhen Institute for Drug Control, Shenzhen 518057, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen 518057, China.

Shenzhen Institute for Drug Control, Shenzhen 518057, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.

出版信息

J Pharm Biomed Anal. 2018 Oct 25;160:64-72. doi: 10.1016/j.jpba.2018.07.036. Epub 2018 Jul 20.

Abstract

The Gleditsia sinensis Lam thorn (GST) is a classical traditional Chinese medical herb, which is of high medical and economic value. GST could be easily adulterated with branch of Rosa multiflora thunb (BRM) and Rosa rugosa thumb (BRR), because of their similar appearances and much lower cost for these adulterants. In this study Fourier transform near-infrared spectroscopy (FT-NIR) combined with chemical pattern recognition techniques was explored for the first time to discriminate and quantify of cheaper materials (BRM and BRR) in GST. The Savitzkye-Golay (SG) smoothing, vector normalization (VN), min max normalization (MMN), first derivative (1 st D) and second derivative (2nd D) methods were used to pre-process the raw FT-NIR spectra. Successive projections algorithm was adopted to select the characteristic variables and linear discriminate analysis (LDA), support vector machine (SVM), as while as back propagation neural network (BPNN) algorithms were applied to construct the identification models. Results showed that BPNN models performance best compared with LDA and SVM models for it could reach 100% accuracy for identifying authentic GST, and GST adulterated with BRM and BRR based on the spectral region of 6500-5500 cm combined with 1 st D pre-processing. In addition, the BRM and BRR content in adulterated GST were determined by partial least squares (PLS) regression. The correlation coefficient of prediction (r), root mean square error of prediction (RMSEP) and bias for the prediction by PLS regression model were 0.9972, 1.969% and 0.3198 for BRM, 0.9972, 1.879% and 0.05408 for BRR, respectively. These results suggest that the combination of NIR spectroscopy and chemometric methods offers a simple, fast and reliable method for classification and quantification in the quality control of the tradition Chinese medicine herb of GST.

摘要

皂荚刺(Gleditsia sinensis Lam thorn,GST)是一种经典的传统中药,具有很高的药用和经济价值。由于其外观相似,且这些掺杂物的成本要低得多,GST 很容易被蔷薇科悬钩子属植物(BRM)和蔷薇属植物(BRR)掺假。本研究首次探索了傅里叶变换近红外光谱(FT-NIR)结合化学模式识别技术,用于鉴别和定量 GST 中的较廉价掺杂物(BRM 和 BRR)。采用 Savitzky-Golay(SG)平滑、矢量归一化(VN)、最小-最大归一化(MMN)、一阶导数(1st D)和二阶导数(2nd D)方法对原始 FT-NIR 光谱进行预处理。采用连续投影算法(SPA)选择特征变量,采用线性判别分析(LDA)、支持向量机(SVM)和反向传播神经网络(BPNN)算法建立识别模型。结果表明,与 LDA 和 SVM 模型相比,BPNN 模型的性能最佳,因为它可以达到 100%的准确度来识别真实的 GST 以及 GST 与 BRM 和 BRR 的混合物,这是基于光谱区域 6500-5500cm 结合 1st D 预处理得到的。此外,通过偏最小二乘法(PLS)回归来确定掺假 GST 中的 BRM 和 BRR 含量。BRM 的 PLS 回归模型的预测相关系数(r)、预测均方根误差(RMSEP)和预测偏差分别为 0.9972、1.969%和 0.3198,BRR 的分别为 0.9972、1.879%和 0.05408。这些结果表明,NIR 光谱与化学计量学方法的结合为 GST 等传统中药的分类和定量提供了一种简单、快速、可靠的质量控制方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验