Fraunhofer-Chalmers Centre, Chalmers Science Park, Gothenburg, Sweden.
Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.
AAPS J. 2018 Aug 1;20(5):88. doi: 10.1208/s12248-018-0232-7.
Nonlinear mixed effects (NLME) modeling based on stochastic differential equations (SDEs) have evolved into a promising approach for analysis of PK/PD data. SDE-NLME models go beyond the realm of standard population modeling as they consider stochastic dynamics, thereby introducing a probabilistic perspective on the state variables. This article presents a summary of the main contributions to SDE-NLME models found in the literature. The aims of this work were to develop an exact gradient version of the first-order conditional estimation (FOCE) method for SDE-NLME models and to investigate whether it enabled faster estimation and better gradient precision/accuracy compared to the use of gradients approximated by finite differences. A simulation-estimation study was set up whereby finite difference approximations of the gradients of each level were interchanged with the exact gradients. Following previous work, the uncertainty of the state variables was accounted for using the extended Kalman filter (EKF). The exact gradient FOCE method was implemented in Mathematica 11 and evaluated on SDE versions of three common PK/PD models. When finite difference gradients were replaced by exact gradients at both FOCE levels, relative runtimes improved between 6- and 32-fold, depending on model complexity. Additionally, gradient precision/accuracy was significantly better in the exact gradient case. We conclude that parameter estimation using FOCE with exact gradients can successfully be applied to SDE-NLME models.
基于随机微分方程(SDE)的非线性混合效应(NLME)建模已经发展成为分析 PK/PD 数据的一种很有前途的方法。SDE-NLME 模型超越了标准群体建模的范畴,因为它们考虑了随机动态,从而为状态变量引入了概率视角。本文总结了文献中 SDE-NLME 模型的主要贡献。这项工作的目的是为 SDE-NLME 模型开发一阶条件估计(FOCE)方法的精确梯度版本,并研究与使用有限差分近似的梯度相比,它是否能够实现更快的估计和更好的梯度精度/准确性。为此,建立了一个模拟-估计研究,在该研究中,每个级别的梯度的有限差分近似与精确梯度进行了交换。根据先前的工作,使用扩展卡尔曼滤波器(EKF)来考虑状态变量的不确定性。精确梯度 FOCE 方法在 Mathematica 11 中实现,并在三个常见 PK/PD 模型的 SDE 版本上进行了评估。当在 FOCE 两个级别都用精确梯度替代有限差分梯度时,相对运行时间根据模型复杂性提高了 6-32 倍。此外,在精确梯度的情况下,梯度精度/准确性显著提高。我们得出结论,使用具有精确梯度的 FOCE 进行参数估计可以成功应用于 SDE-NLME 模型。