Suppr超能文献

微通道超声搅拌电铸传质的数值模拟与电化学实验。

Numerical simulations and electrochemical experiments of the mass transfer of microvias electroforming under ultrasonic agitation.

机构信息

Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, People's Republic of China.

Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, People's Republic of China; Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, People's Republic of China.

出版信息

Ultrason Sonochem. 2018 Nov;48:424-431. doi: 10.1016/j.ultsonch.2018.07.002. Epub 2018 Jul 4.

Abstract

This paper explores the mass transfer mechanism of microvias electroforming under ultrasonic agitation by numerical simulations and electrochemical experiments. Firstly, the velocity distribution of electroforming solution inside the microvias under ultrasound treatment is simulated by COMSOL Multiphysics software. The ultrasonic frequency is that of 120 kHz. The ultrasonic powers are 100 W, 200 W, 300 W and 400 W, respectively. The simulation results indicate that the mean liquid velocity inside the microvias increases with the increasing of acoustic power. In addition, under a certain ultrasonic power, the mean liquid velocity will decrease with increasing the distance between microvias and transducer, the aspect ratio of microvias and the distance between cathode and central position. Secondly, electrochemical experiments are presented to investigate the effect of ultrasonic agitation on the electrode kinetics of microvias electroforming. It is found that ultrasonic treatment decreases the thickness of diffusion layer, increases the limiting diffusion current densities and further enhances the mass transfer of microvias electroforming. Compared with the silent condition, the diffusion layer thicknesses with the acoustic power of 100 W, 200 W, 300 W, 400 W are decreased by 50.0%, 64.1%, 69.3% and 74.5%, respectively. Finally, according to the results above, the 200 × 200 metal micro-column array structures are fabricated by ultrasonic electroforming under the condition of 120 kHz and 200 W. The metal micro-column is 250 μm high and has a diameter of 80 μm. The results show that ultrasonic electroforming can enhance the mass transfer of microvias electroforming, and further solve the problem of porous structure in electroforming layer. This work contributes to expanding the application of ultrasonic agitation in the microvias electroforming.

摘要

本文通过数值模拟和电化学实验研究了超声搅拌下微孔电成形的传质机理。首先,采用 COMSOL Multiphysics 软件模拟了超声处理下微孔内电铸溶液的速度分布。超声频率为 120 kHz。超声功率分别为 100 W、200 W、300 W 和 400 W。模拟结果表明,随着声功率的增加,微孔内的平均液体速度增加。此外,在一定的超声功率下,随着微孔与换能器之间的距离、微孔的纵横比以及阴极与中心位置之间的距离的增加,平均液体速度会降低。其次,进行了电化学实验以研究超声搅拌对微孔电成形电极动力学的影响。结果表明,超声处理减小了扩散层的厚度,增加了极限扩散电流密度,从而进一步增强了微孔电成形的传质。与无超声处理相比,在声功率为 100 W、200 W、300 W、400 W 时,扩散层厚度分别减小了 50.0%、64.1%、69.3%和 74.5%。最后,根据上述结果,在 120 kHz 和 200 W 的条件下,通过超声电铸制备了 200×200 金属微柱阵列结构。金属微柱高 250 µm,直径 80 µm。结果表明,超声电铸可以增强微孔电成形的传质,进一步解决电铸层中多孔结构的问题。这项工作有助于扩大超声搅拌在微孔电成形中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验