Suppr超能文献

使用小型显微镜在主动行为期间同时进行光遗传学和细胞分辨率钙成像。

Simultaneous Optogenetics and Cellular Resolution Calcium Imaging During Active Behavior Using a Miniaturized Microscope.

作者信息

Stamatakis Alice M, Schachter Mike J, Gulati Srishti, Zitelli Kevin T, Malanowski Sam, Tajik Arash, Fritz Christopher, Trulson Mark, Otte Stephani L

机构信息

Inscopix Inc., Palo Alto, CA, United States.

出版信息

Front Neurosci. 2018 Jul 24;12:496. doi: 10.3389/fnins.2018.00496. eCollection 2018.

Abstract

The ability to precisely monitor and manipulate neural circuits is essential to understand the brain. Advancements over the last decade in optical techniques such as calcium imaging and optogenetics have empowered researchers to gain insight into brain function by systematically manipulating or monitoring defined neural circuits. Combining these cutting-edge techniques enables a more direct mechanism for ascribing neural dynamics to behavior. Here, we developed a miniaturized integrated microscope that allows for simultaneous optogenetic manipulation and cellular-resolution calcium imaging within the same field of view in freely behaving mice. The integrated microscope has two LEDs, one filtered with a 435-460 nm excitation filter for imaging green calcium indicators, and a second LED filtered with a 590-650 nm excitation filter for optogenetic modulation of red-shifted opsins. We developed and tested this technology to minimize biological and optical crosstalk. We observed insignificant amounts of biological and optical crosstalk with regards to the optogenetic LED affecting calcium imaging. We observed some amounts of residual crosstalk of the imaging light on optogenetic manipulation. Despite residual crosstalk, we have demonstrated the utility of this technology by probing the causal relationship between basolateral amygdala (BLA) -to- nucleus accumbens (NAc) circuit function, behavior, and network dynamics. Using this integrated microscope we were able to observe both a significant behavioral and cellular calcium response of the optogenetic modulation on the BLA-to-NAc circuit. This integrated strategy will allow for routine investigation of the causality of circuit manipulation on cellular-resolution network dynamics and behavior.

摘要

精确监测和操纵神经回路的能力对于理解大脑至关重要。在过去十年中,诸如钙成像和光遗传学等光学技术取得了进展,使研究人员能够通过系统地操纵或监测特定的神经回路来深入了解大脑功能。将这些前沿技术结合起来,能够为将神经动力学归因于行为提供更直接的机制。在这里,我们开发了一种小型化集成显微镜,它允许在自由活动的小鼠的同一视野内同时进行光遗传学操纵和细胞分辨率的钙成像。该集成显微镜有两个发光二极管,一个通过435 - 460纳米激发滤光片滤波,用于对绿色钙指示剂进行成像,另一个发光二极管通过590 - 650纳米激发滤光片滤波,用于对红移视蛋白进行光遗传学调制。我们开发并测试了这项技术,以尽量减少生物和光学串扰。我们观察到,就光遗传学发光二极管对钙成像的影响而言,生物和光学串扰量微不足道。我们观察到成像光对光遗传学操纵存在一定量的残余串扰。尽管存在残余串扰,但我们通过探究基底外侧杏仁核(BLA)到伏隔核(NAc)回路功能、行为和网络动力学之间的因果关系,证明了这项技术的实用性。使用这种集成显微镜,我们能够观察到光遗传学调制对BLA到NAc回路的显著行为和细胞钙反应。这种集成策略将允许对细胞分辨率网络动力学和行为的回路操纵因果关系进行常规研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b5a/6066578/2570168a6c82/fnins-12-00496-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验